Math Problem Statement

0y03zzx2+z2dxdzdy\int_0^{y}\int_0^{\sqrt3z}\frac{z}{x^2+z^2}\text{dxdzdy}

Solution

To evaluate the given triple integral:

0y03zzx2+z2dxdzdy\int_0^{y}\int_0^{\sqrt3z}\frac{z}{x^2+z^2} \, dx \, dz \, dy

Step-by-Step Evaluation

1. Inner Integral with Respect to xx:

The integrand is zx2+z2\frac{z}{x^2+z^2}. Here, zz is treated as a constant with respect to xx.

03zzx2+z2dx\int_0^{\sqrt{3}z} \frac{z}{x^2 + z^2} \, dx

Let’s perform a substitution: u=x2+z2du=2xdxu = x^2 + z^2 \quad \Rightarrow \quad du = 2x \, dx For x=0x = 0, u=z2u = z^2. For x=3zx = \sqrt{3}z, u=(3z)2+z2=4z2u = (\sqrt{3}z)^2 + z^2 = 4z^2.

Using this substitution, we rewrite: 03zzx2+z2dx=z24z2zu12zdu=12z24z21udu\int_0^{\sqrt{3}z} \frac{z}{x^2+z^2} \, dx = \int_{z^2}^{4z^2} \frac{z}{u} \cdot \frac{1}{2z} \, du = \frac{1}{2} \int_{z^2}^{4z^2} \frac{1}{u} \, du

The integral of 1u\frac{1}{u} is lnu\ln|u|: 12z24z21udu=12[ln(4z2)ln(z2)]=12ln(4z2z2)=12ln(4)=ln(2)\frac{1}{2} \int_{z^2}^{4z^2} \frac{1}{u} \, du = \frac{1}{2} \big[ \ln(4z^2) - \ln(z^2) \big] = \frac{1}{2} \ln\left(\frac{4z^2}{z^2}\right) = \frac{1}{2} \ln(4) = \ln(2)

So, the result of the inner integral is: 03zzx2+z2dx=ln(2)\int_0^{\sqrt{3}z} \frac{z}{x^2+z^2} \, dx = \ln(2)

2. Middle Integral with Respect to zz:

Next, substitute this result into the middle integral: 0yln(2)dz\int_0^y \ln(2) \, dz

Since ln(2)\ln(2) is a constant: 0yln(2)dz=ln(2)0y1dz=ln(2)y\int_0^y \ln(2) \, dz = \ln(2) \int_0^y 1 \, dz = \ln(2) \cdot y

3. Outer Integral with Respect to yy:

Finally, substitute this into the outer integral: 0yyln(2)dy\int_0^{y} y \ln(2) \, dy

This is: ln(2)0yydy=ln(2)y2201=ln(2)122=ln(2)2\ln(2) \int_0^y y \, dy = \ln(2) \cdot \frac{y^2}{2} \Big|_0^1 = \ln(2) \cdot \frac{1^2}{2} = \frac{\ln(2)}{2}

Final Answer:

0y03zzx2+z2dxdzdy=ln(2)2\int_0^{y} \int_0^{\sqrt{3}z} \frac{z}{x^2+z^2} \, dx \, dz \, dy = \frac{\ln(2)}{2}


Do you want detailed clarification or further steps explained?

Related Questions:

  1. What is the role of substitution in evaluating integrals?
  2. How does the logarithmic function arise in integrals involving 1u\frac{1}{u}?
  3. How does symmetry simplify multi-variable integration problems?
  4. What is the geometric interpretation of the integrand in this problem?
  5. Can this integral be solved using polar coordinates?

Tip: Always ensure that variable limits and substitutions are consistent with the original integral setup.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integration
Iterated Integrals
Substitution Method
Logarithmic Functions

Formulas

\( \int \frac{1}{u} \, du = \ln|u| + C \)
Integration limits substitution in iterated integrals

Theorems

Fundamental Theorem of Calculus
Logarithmic Integration Rule

Suitable Grade Level

Grades 11-12 or College Level