To evaluate the triple integral
∭ E z d V \iiint_E z \, dV ∭ E z d V
where E E E is the region in the first octant bounded by the cylinder y 2 + z 2 = 25 y^2 + z^2 = 25 y 2 + z 2 = 25 , the planes x = 0 x = 0 x = 0 , y = 5 x y = 5x y = 5 x , and z = 0 z = 0 z = 0 , we will convert the integral into cylindrical coordinates.
Step 1: Cylindrical coordinates setup
In cylindrical coordinates:
x = r cos θ , y = r sin θ , z = z , d V = r d r d θ d z . x = r\cos\theta, \quad y = r\sin\theta, \quad z = z, \quad dV = r\,dr\,d\theta\,dz. x = r cos θ , y = r sin θ , z = z , d V = r d r d θ d z .
The cylinder y 2 + z 2 = 25 y^2 + z^2 = 25 y 2 + z 2 = 25 becomes:
r 2 sin 2 θ + z 2 = 25. r^2\sin^2\theta + z^2 = 25. r 2 sin 2 θ + z 2 = 25.
Since z z z is the vertical coordinate, the bounds on z z z are:
0 ≤ z ≤ 25 − r 2 sin 2 θ . 0 \leq z \leq \sqrt{25 - r^2\sin^2\theta}. 0 ≤ z ≤ 25 − r 2 sin 2 θ .
The plane y = 5 x y = 5x y = 5 x in cylindrical coordinates is:
r sin θ = 5 r cos θ ⟹ tan θ = 5 ⟹ θ = arctan ( 5 ) . r\sin\theta = 5r\cos\theta \implies \tan\theta = 5 \implies \theta = \arctan(5). r sin θ = 5 r cos θ ⟹ tan θ = 5 ⟹ θ = arctan ( 5 ) .
The region lies in the first octant (x , y , z ≥ 0 x, y, z \geq 0 x , y , z ≥ 0 ), so:
0 ≤ r ≤ 5 , 0 ≤ θ ≤ arctan ( 5 ) , 0 ≤ z ≤ 25 − r 2 sin 2 θ . 0 \leq r \leq 5, \quad 0 \leq \theta \leq \arctan(5), \quad 0 \leq z \leq \sqrt{25 - r^2\sin^2\theta}. 0 ≤ r ≤ 5 , 0 ≤ θ ≤ arctan ( 5 ) , 0 ≤ z ≤ 25 − r 2 sin 2 θ .
Step 2: Integral in cylindrical coordinates
The integral becomes:
∭ E z d V = ∫ 0 arctan ( 5 ) ∫ 0 5 ∫ 0 25 − r 2 sin 2 θ z ⋅ r d z d r d θ . \iiint_E z\,dV = \int_0^{\arctan(5)} \int_0^5 \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \cdot r \, dz\,dr\,d\theta. ∭ E z d V = ∫ 0 a r c t a n ( 5 ) ∫ 0 5 ∫ 0 25 − r 2 s i n 2 θ z ⋅ r d z d r d θ .
Step 3: Evaluate the z z z -integral
The inner integral with respect to z z z is:
∫ 0 25 − r 2 sin 2 θ z ⋅ r d z = r ∫ 0 25 − r 2 sin 2 θ z d z . \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \cdot r \, dz = r \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \, dz. ∫ 0 25 − r 2 s i n 2 θ z ⋅ r d z = r ∫ 0 25 − r 2 s i n 2 θ z d z .
Compute:
∫ 0 25 − r 2 sin 2 θ z d z = [ z 2 2 ] 0 25 − r 2 sin 2 θ = ( 25 − r 2 sin 2 θ ) 2 2 − 0 2 2 . \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \, dz = \left[\frac{z^2}{2}\right]_0^{\sqrt{25 - r^2\sin^2\theta}} = \frac{\left(\sqrt{25 - r^2\sin^2\theta}\right)^2}{2} - \frac{0^2}{2}. ∫ 0 25 − r 2 s i n 2 θ z d z = [ 2 z 2 ] 0 25 − r 2 s i n 2 θ = 2 ( 25 − r 2 s i n 2 θ ) 2 − 2 0 2 .
Simplify:
∫ 0 25 − r 2 sin 2 θ z d z = 25 − r 2 sin 2 θ 2 . \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \, dz = \frac{25 - r^2\sin^2\theta}{2}. ∫ 0 25 − r 2 s i n 2 θ z d z = 2 25 − r 2 s i n 2 θ .
So:
∫ 0 25 − r 2 sin 2 θ z ⋅ r d z = r ⋅ 25 − r 2 sin 2 θ 2 = r ( 25 − r 2 sin 2 θ ) 2 . \int_0^{\sqrt{25 - r^2\sin^2\theta}} z \cdot r \, dz = r \cdot \frac{25 - r^2\sin^2\theta}{2} = \frac{r(25 - r^2\sin^2\theta)}{2}. ∫ 0 25 − r 2 s i n 2 θ z ⋅ r d z = r ⋅ 2 25 − r 2 s i n 2 θ = 2 r ( 25 − r 2 s i n 2 θ ) .
Step 4: Remaining integrals
The integral becomes:
∫ 0 arctan ( 5 ) ∫ 0 5 r ( 25 − r 2 sin 2 θ ) 2 d r d θ . \int_0^{\arctan(5)} \int_0^5 \frac{r(25 - r^2\sin^2\theta)}{2} \, dr\,d\theta. ∫ 0 a r c t a n ( 5 ) ∫ 0 5 2 r ( 25 − r 2 s i n 2 θ ) d r d θ .
Separate terms:
1 2 ∫ 0 arctan ( 5 ) ∫ 0 5 ( 25 r − r 3 sin 2 θ ) d r d θ . \frac{1}{2} \int_0^{\arctan(5)} \int_0^5 \left(25r - r^3\sin^2\theta\right) \, dr\,d\theta. 2 1 ∫ 0 a r c t a n ( 5 ) ∫ 0 5 ( 25 r − r 3 sin 2 θ ) d r d θ .
First term:
∫ 0 5 25 r d r = 25 [ r 2 2 ] 0 5 = 25 ⋅ 25 2 = 312.5. \int_0^5 25r \, dr = 25 \left[\frac{r^2}{2}\right]_0^5 = 25 \cdot \frac{25}{2} = 312.5. ∫ 0 5 25 r d r = 25 [ 2 r 2 ] 0 5 = 25 ⋅ 2 25 = 312.5.
Second term:
∫ 0 5 r 3 d r = [ r 4 4 ] 0 5 = 625 4 . \int_0^5 r^3 \, dr = \left[\frac{r^4}{4}\right]_0^5 = \frac{625}{4}. ∫ 0 5 r 3 d r = [ 4 r 4 ] 0 5 = 4 625 .
So:
1 2 ∫ 0 arctan ( 5 ) ( 312.5 − sin 2 θ ⋅ 625 4 ) d θ . \frac{1}{2} \int_0^{\arctan(5)} \left(312.5 - \frac{\sin^2\theta \cdot 625}{4}\right) \, d\theta. 2 1 ∫ 0 a r c t a n ( 5 ) ( 312.5 − 4 s i n 2 θ ⋅ 625 ) d θ .
Factor and simplify:
1 2 ( 312.5 ∫ 0 arctan ( 5 ) d θ − 625 4 ∫ 0 arctan ( 5 ) sin 2 θ d θ ) . \frac{1}{2} \left(312.5 \int_0^{\arctan(5)} d\theta - \frac{625}{4} \int_0^{\arctan(5)} \sin^2\theta \, d\theta\right). 2 1 ( 312.5 ∫ 0 a r c t a n ( 5 ) d θ − 4 625 ∫ 0 a r c t a n ( 5 ) sin 2 θ d θ ) .
Compute ∫ 0 arctan ( 5 ) d θ = arctan ( 5 ) \int_0^{\arctan(5)} d\theta = \arctan(5) ∫ 0 a r c t a n ( 5 ) d θ = arctan ( 5 ) .
Use the identity sin 2 θ = 1 − cos ( 2 θ ) 2 \sin^2\theta = \frac{1 - \cos(2\theta)}{2} sin 2 θ = 2 1 − c o s ( 2 θ ) :
∫ 0 arctan ( 5 ) sin 2 θ d θ = 1 2 ∫ 0 arctan ( 5 ) d θ − 1 2 ∫ 0 arctan ( 5 ) cos ( 2 θ ) d θ . \int_0^{\arctan(5)} \sin^2\theta \, d\theta = \frac{1}{2} \int_0^{\arctan(5)} \, d\theta - \frac{1}{2} \int_0^{\arctan(5)} \cos(2\theta) \, d\theta. ∫ 0 a r c t a n ( 5 ) sin 2 θ d θ = 2 1 ∫ 0 a r c t a n ( 5 ) d θ − 2 1 ∫ 0 a r c t a n ( 5 ) cos ( 2 θ ) d θ .
Now proceed step by step with exact evaluation, or let me know if further simplifications are required for precise values.