Math Problem Statement

Evaluate the cylindrical coordinate integral ModifyingAbove ModifyingBelow Integral from nothing to nothing With 2 pi width 0 ModifyingAbove ModifyingBelow Integral from nothing to nothing With theta divided by 2 pi width 0 ModifyingAbove ModifyingBelow Integral from nothing to nothing With 5 plus 24 r squared width 0 r dz dr d theta .

Solution

To evaluate the cylindrical coordinate integral

02π0θ2π05+24r2rdzdrdθ,\int_0^{2\pi} \int_0^{\frac{\theta}{2\pi}} \int_0^{5 + 24r^2} r \, dz \, dr \, d\theta,

we can proceed by integrating step-by-step with respect to each variable zz, rr, and θ\theta.

Step 1: Integrate with respect to zz

The innermost integral is with respect to zz, over the interval z=0z = 0 to z=5+24r2z = 5 + 24r^2. Since rr and θ\theta are constants in this integral, we have:

05+24r2rdz=r[z]05+24r2=r(5+24r2)=5r+24r3.\int_0^{5 + 24r^2} r \, dz = r \cdot \left[ z \right]_0^{5 + 24r^2} = r \cdot (5 + 24r^2) = 5r + 24r^3.

So the integral reduces to:

02π0θ2π(5r+24r3)drdθ.\int_0^{2\pi} \int_0^{\frac{\theta}{2\pi}} (5r + 24r^3) \, dr \, d\theta.

Step 2: Integrate with respect to rr

Next, we integrate with respect to rr, from r=0r = 0 to r=θ2πr = \frac{\theta}{2\pi}:

0θ2π(5r+24r3)dr.\int_0^{\frac{\theta}{2\pi}} (5r + 24r^3) \, dr.

Breaking this into two integrals, we get:

0θ2π5rdr+0θ2π24r3dr.\int_0^{\frac{\theta}{2\pi}} 5r \, dr + \int_0^{\frac{\theta}{2\pi}} 24r^3 \, dr.

First part:

0θ2π5rdr=5r220θ2π=5(θ2π)22=52θ24π2=5θ28π2.\int_0^{\frac{\theta}{2\pi}} 5r \, dr = 5 \cdot \frac{r^2}{2} \Big|_0^{\frac{\theta}{2\pi}} = 5 \cdot \frac{\left(\frac{\theta}{2\pi}\right)^2}{2} = \frac{5}{2} \cdot \frac{\theta^2}{4\pi^2} = \frac{5\theta^2}{8\pi^2}.

Second part:

0θ2π24r3dr=24r440θ2π=6(θ2π)4=6θ416π4=3θ48π4.\int_0^{\frac{\theta}{2\pi}} 24r^3 \, dr = 24 \cdot \frac{r^4}{4} \Big|_0^{\frac{\theta}{2\pi}} = 6 \cdot \left(\frac{\theta}{2\pi}\right)^4 = 6 \cdot \frac{\theta^4}{16\pi^4} = \frac{3\theta^4}{8\pi^4}.

So after integrating with respect to rr, we get:

02π(5θ28π2+3θ48π4)dθ.\int_0^{2\pi} \left(\frac{5\theta^2}{8\pi^2} + \frac{3\theta^4}{8\pi^4}\right) \, d\theta.

Step 3: Integrate with respect to θ\theta

Now, we integrate each term with respect to θ\theta from 00 to 2π2\pi:

02π5θ28π2dθ+02π3θ48π4dθ.\int_0^{2\pi} \frac{5\theta^2}{8\pi^2} \, d\theta + \int_0^{2\pi} \frac{3\theta^4}{8\pi^4} \, d\theta.

First part:

02π5θ28π2dθ=58π202πθ2dθ.\int_0^{2\pi} \frac{5\theta^2}{8\pi^2} \, d\theta = \frac{5}{8\pi^2} \int_0^{2\pi} \theta^2 \, d\theta.

Using the formula for θ2dθ=θ33\int \theta^2 \, d\theta = \frac{\theta^3}{3}, we get:

=58π2(2π)33=58π28π33=58π3=40π3.= \frac{5}{8\pi^2} \cdot \frac{(2\pi)^3}{3} = \frac{5}{8\pi^2} \cdot \frac{8\pi^3}{3} = \frac{5 \cdot 8\pi}{3} = \frac{40\pi}{3}.

Second part:

02π3θ48π4dθ=38π402πθ4dθ.\int_0^{2\pi} \frac{3\theta^4}{8\pi^4} \, d\theta = \frac{3}{8\pi^4} \int_0^{2\pi} \theta^4 \, d\theta.

Using the formula for θ4dθ=θ55\int \theta^4 \, d\theta = \frac{\theta^5}{5}, we get:

=38π4(2π)55=38π432π55=332π5=96π5.= \frac{3}{8\pi^4} \cdot \frac{(2\pi)^5}{5} = \frac{3}{8\pi^4} \cdot \frac{32\pi^5}{5} = \frac{3 \cdot 32\pi}{5} = \frac{96\pi}{5}.

Final Answer:

Combining both parts, we get:

40π3+96π5=200π+288π15=488π15.\frac{40\pi}{3} + \frac{96\pi}{5} = \frac{200\pi + 288\pi}{15} = \frac{488\pi}{15}.

So, the value of the integral is:

488π15.\frac{488\pi}{15}.

Would you like more details on a specific step, or have any questions?


  1. How do cylindrical coordinates simplify volume integrals?
  2. What are common applications of cylindrical integrals in physics?
  3. How would this integral change if the upper limit of zz was a function of θ\theta instead?
  4. Can we use symmetry arguments in this integral for simplification?
  5. How do cylindrical coordinates compare with spherical coordinates for integration?

Tip: When setting up cylindrical integrals, always ensure the limits match the geometry of the problem for an accurate result.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Cylindrical Coordinates
Triple Integrals
Volume Integrals

Formulas

∫∫∫_V f(r, θ, z) r dz dr dθ
Integral of z with respect to given limits
Integral of polynomials of r over given range

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

College Calculus