Math Problem Statement

aplicando el metodo de sustitucion trigonometrica, cual seria la respuesta

aplicando el metodo de sustitucion trigonometrica, cual seria la respuesta

Solution

The integral you've provided is:

1x2a2x2dx\int \frac{1}{x^2 \sqrt{a^2 - x^2}} \, dx

To solve this using trigonometric substitution, we can use the following substitution for expressions of the form a2x2a^2 - x^2:

Step 1: Trigonometric Substitution

Let: x=asin(θ)x = a \sin(\theta) Then, we differentiate: dx=acos(θ)dθdx = a \cos(\theta) \, d\theta Also, using this substitution, the expression a2x2\sqrt{a^2 - x^2} simplifies as follows: a2x2=a2a2sin2(θ)=acos(θ)\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2(\theta)} = a \cos(\theta)

Step 2: Substituting into the Integral

Substitute x=asin(θ)x = a \sin(\theta) and dx=acos(θ)dθdx = a \cos(\theta) \, d\theta into the integral: 1x2a2x2dx=1a2sin2(θ)acos(θ)acos(θ)dθ\int \frac{1}{x^2 \sqrt{a^2 - x^2}} \, dx = \int \frac{1}{a^2 \sin^2(\theta) \cdot a \cos(\theta)} \cdot a \cos(\theta) \, d\theta

Simplifying the terms: =1a3sin2(θ)acos(θ)dθ= \int \frac{1}{a^3 \sin^2(\theta)} \cdot a \cos(\theta) \, d\theta =1a2cos(θ)sin2(θ)dθ= \frac{1}{a^2} \int \frac{\cos(\theta)}{\sin^2(\theta)} \, d\theta

Step 3: Simplifying the Integral

This integral can be rewritten using the identity csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}, so we have: =1a2csc2(θ)dθ= \frac{1}{a^2} \int \csc^2(\theta) \, d\theta

The integral of csc2(θ)\csc^2(\theta) is: csc2(θ)dθ=cot(θ)\int \csc^2(\theta) \, d\theta = -\cot(\theta)

Step 4: Back Substitution

We now substitute back for θ\theta using the original substitution x=asin(θ)x = a \sin(\theta). From this, we know: sin(θ)=xa,cot(θ)=cos(θ)sin(θ)=a2x2x\sin(\theta) = \frac{x}{a}, \quad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\sqrt{a^2 - x^2}}{x}

Thus, the solution to the integral is: 1a2(a2x2x)+C\frac{1}{a^2} \left( -\frac{\sqrt{a^2 - x^2}}{x} \right) + C Simplifying: a2x2a2x+C-\frac{\sqrt{a^2 - x^2}}{a^2 x} + C

This is the final answer.

Would you like more details or have any questions?

Related Questions:

  1. What are the common trigonometric substitutions for integrals involving a2x2\sqrt{a^2 - x^2}?
  2. How can you approach solving integrals using different substitution methods?
  3. What is the geometric interpretation of trigonometric substitutions in integrals?
  4. How would the integral change if the integrand involved x2a2\sqrt{x^2 - a^2}?
  5. Can you explain how the inverse trigonometric functions relate to these types of integrals?

Tip:

For integrals involving square roots of the form a2x2a^2 - x^2, a2+x2a^2 + x^2, or x2a2x^2 - a^2, trigonometric substitutions like x=asin(θ)x = a \sin(\theta), x=atan(θ)x = a \tan(\theta), or x=asec(θ)x = a \sec(\theta) are very useful tools.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Substitution
Definite and Indefinite Integrals

Formulas

x = a sin(θ)
dx = a cos(θ) dθ
√(a² - x²) = a cos(θ)

Theorems

Trigonometric Substitution
Integral of csc²(θ)

Suitable Grade Level

Undergraduate Level (Calculus II)