Math Problem Statement

Given: cos A = 7/25, 270° < A < 360° sin B = -12/13, 180° < B < 270°

  1. tan (A + B)

  2. tan (A - B)

Solution

Given the trigonometric identities and the information:

cosA=725,270<A<360(fourth quadrant)\cos A = \frac{7}{25}, \quad 270^\circ < A < 360^\circ \quad (\text{fourth quadrant}) sinB=1213,180<B<270(third quadrant)\sin B = -\frac{12}{13}, \quad 180^\circ < B < 270^\circ \quad (\text{third quadrant})

We can calculate tan(A+B)\tan(A + B) and tan(AB)\tan(A - B) using the following identities for tangent sum and difference:

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}

Step 1: Calculate sinA\sin A and cosB\cos B

For angle AA (fourth quadrant):

We know that sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, so: sin2A=1cos2A=1(725)2=149625=576625\sin^2 A = 1 - \cos^2 A = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} sinA=2425(since A is in the fourth quadrant, where sine is negative)\sin A = -\frac{24}{25} \quad (\text{since } A \text{ is in the fourth quadrant, where sine is negative})

For angle BB (third quadrant):

We know that sin2B+cos2B=1\sin^2 B + \cos^2 B = 1, so: cos2B=1sin2B=1(1213)2=1144169=25169\cos^2 B = 1 - \sin^2 B = 1 - \left(\frac{-12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} cosB=513(since B is in the third quadrant, where cosine is negative)\cos B = -\frac{5}{13} \quad (\text{since } B \text{ is in the third quadrant, where cosine is negative})

Step 2: Calculate tanA\tan A and tanB\tan B

tanA=sinAcosA=2425725=247\tan A = \frac{\sin A}{\cos A} = \frac{-\frac{24}{25}}{\frac{7}{25}} = -\frac{24}{7} tanB=sinBcosB=1213513=125\tan B = \frac{\sin B}{\cos B} = \frac{-\frac{12}{13}}{-\frac{5}{13}} = \frac{12}{5}

Step 3: Calculate tan(A+B)\tan(A + B)

tan(A+B)=tanA+tanB1tanAtanB=247+1251(247)125\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{-\frac{24}{7} + \frac{12}{5}}{1 - \left(-\frac{24}{7}\right) \cdot \frac{12}{5}}

To simplify:

tan(A+B)=12035+84351(28835)=36351+28835\tan(A + B) = \frac{-\frac{120}{35} + \frac{84}{35}}{1 - \left(-\frac{288}{35}\right)} = \frac{-\frac{36}{35}}{1 + \frac{288}{35}} tan(A+B)=363532335=36323\tan(A + B) = \frac{-\frac{36}{35}}{\frac{323}{35}} = \frac{-36}{323}

Thus: tan(A+B)=36323\tan(A + B) = \frac{-36}{323}

Step 4: Calculate tan(AB)\tan(A - B)

tan(AB)=tanAtanB1+tanAtanB=2471251+(247)125\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B} = \frac{-\frac{24}{7} - \frac{12}{5}}{1 + \left(-\frac{24}{7}\right) \cdot \frac{12}{5}}

To simplify:

tan(AB)=1203584351+(28835)=20435128835=2043525335\tan(A - B) = \frac{-\frac{120}{35} - \frac{84}{35}}{1 + \left(-\frac{288}{35}\right)} = \frac{-\frac{204}{35}}{1 - \frac{288}{35}} = \frac{-\frac{204}{35}}{\frac{-253}{35}} tan(AB)=204253=204253\tan(A - B) = \frac{-204}{-253} = \frac{204}{253}

Thus: tan(AB)=204253\tan(A - B) = \frac{204}{253}

Final answers:

  1. tan(A+B)=36323\tan(A + B) = \frac{-36}{323}
  2. tan(AB)=204253\tan(A - B) = \frac{204}{253}

Do you have any questions or need further clarifications?

Here are 5 related questions:

  1. How do you determine the signs of trigonometric functions in different quadrants?
  2. Can you use other methods to calculate trigonometric identities for sum and difference of angles?
  3. What are the common properties of the unit circle that help in solving trigonometric problems?
  4. How does the Pythagorean identity help in finding unknown trigonometric values?
  5. What are the practical applications of tangent sum and difference identities?

Tip: Always double-check the quadrant to ensure the correct sign for trigonometric functions like sine and cosine.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Angle Sum and Difference

Formulas

sin^2 θ + cos^2 θ = 1
tan(A + B) = (tan A + tan B) / (1 - tan A * tan B)
tan(A - B) = (tan A - tan B) / (1 + tan A * tan B)

Theorems

Pythagorean Identity
Tangent Sum and Difference Identities

Suitable Grade Level

Grades 10-12