Math Problem Statement

prove cot x + tan x / tan x - cot x = -sec2x

Solution

We are given the equation to prove:

cotx+tanxtanxcotx=sec2x\frac{\cot x + \tan x}{\tan x - \cot x} = -\sec^2 x

Step-by-step proof:

Step 1: Express cotx\cot x and tanx\tan x in terms of sinx\sin x and cosx\cos x

Recall the trigonometric identities for cotx\cot x and tanx\tan x: cotx=cosxsinx,tanx=sinxcosx\cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x}

Substitute these into the left-hand side of the equation: cosxsinx+sinxcosxsinxcosxcosxsinx\frac{\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}}{\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}}

Step 2: Simplify the numerator and denominator

To simplify, let's combine the terms in both the numerator and denominator by obtaining a common denominator.

For the numerator: cosxsinx+sinxcosx=cos2x+sin2xsinxcosx\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} Using the Pythagorean identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1, this becomes: 1sinxcosx\frac{1}{\sin x \cos x}

For the denominator: sinxcosxcosxsinx=sin2xcos2xsinxcosx\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = \frac{\sin^2 x - \cos^2 x}{\sin x \cos x}

Thus, we now have: 1sinxcosxsin2xcos2xsinxcosx\frac{\frac{1}{\sin x \cos x}}{\frac{\sin^2 x - \cos^2 x}{\sin x \cos x}}

Step 3: Simplify the fraction

The common factor sinxcosx\sin x \cos x cancels out from both the numerator and denominator, leaving: 1sin2xcos2x\frac{1}{\sin^2 x - \cos^2 x}

Recall that sin2xcos2x=cos2x\sin^2 x - \cos^2 x = -\cos 2x (from the double angle identity). Thus, the expression becomes: 1cos2x=1cos2x\frac{1}{-\cos 2x} = -\frac{1}{\cos 2x}

Step 4: Use the identity for sec2x\sec 2x

We know that sec2x=1cos2x\sec 2x = \frac{1}{\cos 2x}, so the expression simplifies to: sec2x-\sec^2 x

Thus, we have proven that: cotx+tanxtanxcotx=sec2x\frac{\cot x + \tan x}{\tan x - \cot x} = -\sec^2 x

Conclusion:

The given identity is proven.


Do you want any details or have questions on specific steps? Here are 5 related questions to explore further:

  1. Can you prove sec2x=1+tan2x\sec^2 x = 1 + \tan^2 x using a right triangle?
  2. What are the key steps in proving other trigonometric identities?
  3. How would you prove 1tanx+tanx=sec2x\frac{1}{\tan x} + \tan x = \sec^2 x?
  4. What happens if you substitute different angle values like x=45x = 45^\circ in this identity?
  5. Can this identity be used in solving integration problems?

Tip: Always start simplifying trigonometric identities by converting into sinx\sin x and cosx\cos x if you're unsure where to start.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Simplification

Formulas

cot x = cos x / sin x
tan x = sin x / cos x
Pythagorean identity: sin^2 x + cos^2 x = 1
sec x = 1 / cos x
Double angle identity: sin^2 x - cos^2 x = -cos 2x

Theorems

Pythagorean Identity
Trigonometric Identity Simplification

Suitable Grade Level

Grades 10-12