Math Problem Statement

Express the given trigonometric expressions as a single trigonometric ratio and evaluate where applicable, using trigonometric identities and double-angle formulas.

Solution

Let’s go through the problems step by step.

1. Express each of the following as a single trigonometric ratio:

(a) 2sin5xcos5x2 \sin 5x \cos 5x
Using the double-angle formula:
2sinAcosA=sin(2A)2 \sin A \cos A = \sin(2A)
2sin5xcos5x=sin(10x)\therefore 2 \sin 5x \cos 5x = \sin(10x)

(b) cos2θsin2θ\cos^2 \theta - \sin^2 \theta
Using the cosine double-angle identity:
cos2Asin2A=cos(2A)\cos^2 A - \sin^2 A = \cos(2A)
cos2θsin2θ=cos(2θ)\therefore \cos^2 \theta - \sin^2 \theta = \cos(2\theta)

(c) 12sin23x1 - 2 \sin^2 3x
Using the cosine double-angle identity:
12sin2A=cos(2A)1 - 2 \sin^2 A = \cos(2A)
12sin23x=cos(6x)\therefore 1 - 2 \sin^2 3x = \cos(6x)

(d) 2tan4x1tan24x\frac{2 \tan 4x}{1 - \tan^2 4x}
Using the tangent double-angle formula:
2tanA1tan2A=tan(2A)\frac{2 \tan A}{1 - \tan^2 A} = \tan(2A)
2tan4x1tan24x=tan(8x)\therefore \frac{2 \tan 4x}{1 - \tan^2 4x} = \tan(8x)

(e) 4sinθcosθ4 \sin \theta \cos \theta
Using the double-angle formula:
2sinAcosA=sin(2A)2 \sin A \cos A = \sin(2A)
4sinθcosθ=2sin(2θ)4 \sin \theta \cos \theta = 2 \sin(2\theta)

(f) 2cos2θ212 \cos^2 \frac{\theta}{2} - 1
Using the cosine double-angle identity:
2cos2A1=cos(2A)2 \cos^2 A - 1 = \cos(2A)
2cos2θ21=cos(θ)\therefore 2 \cos^2 \frac{\theta}{2} - 1 = \cos(\theta)


2. Express each of the following as a single trigonometric ratio and evaluate:

(a) 2sin45cos452 \sin 45^\circ \cos 45^\circ
Using 2sinAcosA=sin(2A)2 \sin A \cos A = \sin(2A):
2sin45cos45=sin(90)=12 \sin 45^\circ \cos 45^\circ = \sin(90^\circ) = 1

(b) cos230sin230\cos^2 30^\circ - \sin^2 30^\circ
Using cos2Asin2A=cos(2A)\cos^2 A - \sin^2 A = \cos(2A):
cos230sin230=cos(60)=12\cos^2 30^\circ - \sin^2 30^\circ = \cos(60^\circ) = \frac{1}{2}

(c) 2sinπ12cosπ122 \sin \frac{\pi}{12} \cos \frac{\pi}{12}
Using 2sinAcosA=sin(2A)2 \sin A \cos A = \sin(2A):
2sinπ12cosπ12=sin(π6)=122 \sin \frac{\pi}{12} \cos \frac{\pi}{12} = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}

(d) cos2π12sin2π12\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12}
Using cos2Asin2A=cos(2A)\cos^2 A - \sin^2 A = \cos(2A):
cos2π12sin2π12=cos(π6)=32\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12} = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

(e) 12sin23π81 - 2 \sin^2 \frac{3\pi}{8}
Using 12sin2A=cos(2A)1 - 2 \sin^2 A = \cos(2A):
12sin23π8=cos(3π4)=221 - 2 \sin^2 \frac{3\pi}{8} = \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}

(f) 2tan60cos2602 \tan 60^\circ \cos^2 60^\circ
Evaluate step by step:
[ \tan 60^\circ = \sqrt{3}, \cos^2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Double-Angle Formulas

Formulas

sin(2A) = 2sin(A)cos(A)
cos(2A) = cos^2(A) - sin^2(A)
cos(2A) = 1 - 2sin^2(A)
tan(2A) = 2tan(A) / (1 - tan^2(A))

Theorems

Trigonometric identities
Double-angle theorem

Suitable Grade Level

Grades 10-12