Express the given trigonometric expressions as a single trigonometric ratio and evaluate where applicable, using trigonometric identities and double-angle formulas.
Solution
Let’s go through the problems step by step.
1. Express each of the following as a single trigonometric ratio:
(a) 2sin5xcos5x
Using the double-angle formula: 2sinAcosA=sin(2A) ∴2sin5xcos5x=sin(10x)
(b) cos2θ−sin2θ
Using the cosine double-angle identity: cos2A−sin2A=cos(2A) ∴cos2θ−sin2θ=cos(2θ)
(c) 1−2sin23x
Using the cosine double-angle identity: 1−2sin2A=cos(2A) ∴1−2sin23x=cos(6x)
(d) 1−tan24x2tan4x
Using the tangent double-angle formula: 1−tan2A2tanA=tan(2A) ∴1−tan24x2tan4x=tan(8x)
(e) 4sinθcosθ
Using the double-angle formula: 2sinAcosA=sin(2A) 4sinθcosθ=2sin(2θ)
(f) 2cos22θ−1
Using the cosine double-angle identity: 2cos2A−1=cos(2A) ∴2cos22θ−1=cos(θ)
2. Express each of the following as a single trigonometric ratio and evaluate:
(a) 2sin45∘cos45∘
Using 2sinAcosA=sin(2A): 2sin45∘cos45∘=sin(90∘)=1
(b) cos230∘−sin230∘
Using cos2A−sin2A=cos(2A): cos230∘−sin230∘=cos(60∘)=21
(c) 2sin12πcos12π
Using 2sinAcosA=sin(2A): 2sin12πcos12π=sin(6π)=21
(d) cos212π−sin212π
Using cos2A−sin2A=cos(2A): cos212π−sin212π=cos(6π)=23
(e) 1−2sin283π
Using 1−2sin2A=cos(2A): 1−2sin283π=cos(43π)=−22