Math Problem Statement

Find the value of each of the six trigonometric functions of the angle theta in the figure. theta 24 12 Question content area bottom Part 1 sine theta equals    enter your response here ​(Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact​ answer, using radicals as​ needed.)

Solution

To find the values of the six trigonometric functions, we need to use the triangle's side lengths provided:

Given:

  • Opposite side to θ\theta: 12
  • Adjacent side to θ\theta: 24

First, we find the hypotenuse (hh) using the Pythagorean theorem: h=122+242=144+576=720=125h = \sqrt{12^2 + 24^2} = \sqrt{144 + 576} = \sqrt{720} = 12\sqrt{5}

Now, we can define each trigonometric function:

  1. Sine (sinθ\sin \theta): sinθ=oppositehypotenuse=12125=15=55\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{12}{12\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}

  2. Cosine (cosθ\cos \theta): cosθ=adjacenthypotenuse=24125=25=255\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{24}{12\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}

  3. Tangent (tanθ\tan \theta): tanθ=oppositeadjacent=1224=12\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{12}{24} = \frac{1}{2}

  4. Cosecant (cscθ\csc \theta): cscθ=hypotenuseopposite=12512=5\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{12\sqrt{5}}{12} = \sqrt{5}

  5. Secant (secθ\sec \theta): secθ=hypotenuseadjacent=12524=52\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{12\sqrt{5}}{24} = \frac{\sqrt{5}}{2}

  6. Cotangent (cotθ\cot \theta): cotθ=adjacentopposite=2412=2\cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{24}{12} = 2

Summary of Trigonometric Functions:

  • sinθ=55\sin \theta = \frac{\sqrt{5}}{5}
  • cosθ=255\cos \theta = \frac{2\sqrt{5}}{5}
  • tanθ=12\tan \theta = \frac{1}{2}
  • cscθ=5\csc \theta = \sqrt{5}
  • secθ=52\sec \theta = \frac{\sqrt{5}}{2}
  • cotθ=2\cot \theta = 2

Would you like me to explain any of these further or clarify any details? Here are 5 questions for further exploration:

  1. How do these trigonometric values relate to real-world applications?
  2. What are the trigonometric functions if the triangle is scaled?
  3. How can these functions be used to solve problems involving angles in a circle?
  4. What is the importance of rationalizing the denominator in trigonometric expressions?
  5. Can we derive these functions using unit circle definitions?

Tip: Always double-check your work by ensuring the functions satisfy known identities (e.g., sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangle Trigonometry

Formulas

sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / adjacent
csc θ = 1 / sin θ
sec θ = 1 / cos θ
cot θ = 1 / tan θ

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 9-11