Math Problem Statement

Match each of the trigonometric expressions below with the equivalent non-trigonometric function. Use the double-angle identity for sine: sin(2θ) = 2sin(θ)cos(θ).

Solution

The problem asks to match trigonometric expressions with their corresponding non-trigonometric functions. Let's go step-by-step and solve it.

Given expressions:

  1. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find tan(θ)\tan(\theta).
  2. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find cos(θ)\cos(\theta).
  3. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find sin(2θ)\sin(2\theta).
  4. tan(θ)=x4x2\tan(\theta) = \frac{x}{\sqrt{4 - x^2}} — Find sin(θ)\sin(\theta).
  5. tan(θ)=x2\tan(\theta) = \frac{x}{2} — Find cos(θ)\cos(\theta).

Using Trigonometric Identities:

  • Pythagorean identity: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.
  • Double angle identity for sine: sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta).

Step-by-step matching:

  1. A. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find tan(θ)\tan(\theta): Using the identity tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} and solving for cos(θ)\cos(\theta) from sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1, we have: cos(θ)=1sin2(θ)=1(x2)2=1x24=4x22\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left( \frac{x}{2} \right)^2} = \sqrt{1 - \frac{x^2}{4}} = \frac{\sqrt{4 - x^2}}{2} So, tan(θ)=sin(θ)cos(θ)=x24x22=x4x2.\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{x}{2}}{\frac{\sqrt{4 - x^2}}{2}} = \frac{x}{\sqrt{4 - x^2}}. This matches option 4.

  2. B. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find cos(θ)\cos(\theta): We already solved cos(θ)\cos(\theta) in the previous step: cos(θ)=4x22.\cos(\theta) = \frac{\sqrt{4 - x^2}}{2}. This matches option 3.

  3. C. sin(θ)=x2\sin(\theta) = \frac{x}{2} — Find sin(2θ)\sin(2\theta): Using the double angle identity sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta), we substitute: sin(2θ)=2x24x22=x4x22.\sin(2\theta) = 2 \cdot \frac{x}{2} \cdot \frac{\sqrt{4 - x^2}}{2} = \frac{x\sqrt{4 - x^2}}{2}. This matches option 5.

  4. D. tan(θ)=x4x2\tan(\theta) = \frac{x}{\sqrt{4 - x^2}} — Find sin(θ)\sin(\theta): We use the identity sin(θ)=tan(θ)1+tan2(θ)\sin(\theta) = \frac{\tan(\theta)}{\sqrt{1 + \tan^2(\theta)}}. Substituting tan(θ)=x4x2\tan(\theta) = \frac{x}{\sqrt{4 - x^2}}: sin(θ)=x4x21+(x4x2)2=x4x244x2=x2.\sin(\theta) = \frac{\frac{x}{\sqrt{4 - x^2}}}{\sqrt{1 + \left( \frac{x}{\sqrt{4 - x^2}} \right)^2}} = \frac{\frac{x}{\sqrt{4 - x^2}}}{\sqrt{ \frac{4}{4 - x^2}}} = \frac{x}{2}. This matches option 1.

  5. E. tan(θ)=x2\tan(\theta) = \frac{x}{2} — Find cos(θ)\cos(\theta): We know that tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}. Using the Pythagorean identity for cos(θ)\cos(\theta), we have: cos(θ)=4x22.\cos(\theta) = \frac{\sqrt{4 - x^2}}{2}. This matches option 2.

Final Answers:

  1. AA matches 4.
  2. BB matches 3.
  3. CC matches 5.
  4. DD matches 1.
  5. EE matches 2.

Let me know if you'd like more details or have any questions! Here are 5 related questions to practice further:

  1. How do you derive the double-angle identity for sine?
  2. How can you solve for sin(θ)\sin(\theta) given a value for tan(θ)\tan(\theta)?
  3. What is the difference between using the Pythagorean identity and the double-angle identity?
  4. How do you find cos(2θ)\cos(2\theta) using the identities?
  5. What happens to sin(θ)\sin(\theta) and cos(θ)\cos(\theta) when θ=90\theta = 90^\circ?

Tip: When working with trigonometric identities, drawing a triangle and labeling the sides can be helpful for visualizing the relationships!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Double-Angle Identity
Pythagorean Identity

Formulas

Double-angle identity: sin(2θ) = 2sin(θ)cos(θ)
Pythagorean identity: sin²(θ) + cos²(θ) = 1
tan(θ) = sin(θ) / cos(θ)

Theorems

Double-Angle Theorem
Pythagorean Theorem

Suitable Grade Level

High School - Calculus (Grades 11-12) or Early College