Math Problem Statement

Which of the following is equivalent to 5 cos²(θ) − 6 sec²(θ) + 5 sin²(θ) + 6 tan²(θ)?

Solution

Let's break down and solve the problem in Question number 3 step-by-step.

Problem:

We are given: 5cos2(θ)6sec2(θ)+5sin2(θ)+6tan2(θ)5 \cos^2(\theta) - 6 \sec^2(\theta) + 5 \sin^2(\theta) + 6 \tan^2(\theta) We need to simplify this expression and find its equivalent.

Step-by-step simplification:

  1. Start with the given expression: 5cos2(θ)6sec2(θ)+5sin2(θ)+6tan2(θ)5 \cos^2(\theta) - 6 \sec^2(\theta) + 5 \sin^2(\theta) + 6 \tan^2(\theta)

  2. Use trigonometric identities:

    • sec2(θ)=1+tan2(θ)\sec^2(\theta) = 1 + \tan^2(\theta)
    • sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1
  3. Substitute sec2(θ)\sec^2(\theta) with 1+tan2(θ)1 + \tan^2(\theta): 5cos2(θ)6(1+tan2(θ))+5sin2(θ)+6tan2(θ)5 \cos^2(\theta) - 6 (1 + \tan^2(\theta)) + 5 \sin^2(\theta) + 6 \tan^2(\theta)

  4. Expand the expression: 5cos2(θ)66tan2(θ)+5sin2(θ)+6tan2(θ)5 \cos^2(\theta) - 6 - 6 \tan^2(\theta) + 5 \sin^2(\theta) + 6 \tan^2(\theta)

  5. Combine like terms:

    • The 6tan2(θ)6 \tan^2(\theta) terms cancel out. 5cos2(θ)+5sin2(θ)65 \cos^2(\theta) + 5 \sin^2(\theta) - 6
  6. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1: 5(1)6=56=15(1) - 6 = 5 - 6 = -1

Conclusion:

The simplified expression is: 1-1

So the correct answer to Question number 3 is: 1\boxed{-1}

Would you like details or further explanations on any of these steps?

Here are 5 related questions for further practice:

  1. Simplify 3sin2(θ)+4cos2(θ)3 \sin^2(\theta) + 4 \cos^2(\theta).
  2. What is the value of 1+tan2(θ)1 + \tan^2(\theta)?
  3. How do you prove the identity sec2(θ)tan2(θ)=1\sec^2(\theta) - \tan^2(\theta) = 1?
  4. Simplify sin4(θ)+cos4(θ)\sin^4(\theta) + \cos^4(\theta).
  5. Solve for θ\theta when sec2(θ)=4\sec^2(\theta) = 4.

Tip: Remember, Pythagorean identities like sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 are fundamental in trigonometry and help simplify many expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

sec²(θ) = 1 + tan²(θ)
sin²(θ) + cos²(θ) = 1

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12