Math Problem Statement

Given the charts and data what is the three month moving average, the exponential smoothing, and what is the forecast next month with a=0.2

Given the charts and data, what is the three-month moving average, the exponential smoothing, and what is the forecast next month with α = 0.2?

Solution

Let's break this down step-by-step:

  1. Three-Month Moving Average: We will calculate the average of the past three months for each month, beginning from the third month. The data provided is:
    240,350,230,260,280,320,220,310,240,310,240,230240, 350, 230, 260, 280, 320, 220, 310, 240, 310, 240, 230

    To find the three-month moving averages:

    • For month 3: 240+350+2303=8203273.33\frac{240 + 350 + 230}{3} = \frac{820}{3} \approx 273.33
    • For month 4: 350+230+2603=8403=280\frac{350 + 230 + 260}{3} = \frac{840}{3} = 280
    • For month 5: 230+260+2803=7703256.67\frac{230 + 260 + 280}{3} = \frac{770}{3} \approx 256.67
    • For month 6: 260+280+3203=8603286.67\frac{260 + 280 + 320}{3} = \frac{860}{3} \approx 286.67
    • For month 7: 280+320+2203=8203273.33\frac{280 + 320 + 220}{3} = \frac{820}{3} \approx 273.33
    • For month 8: 320+220+3103=8503283.33\frac{320 + 220 + 310}{3} = \frac{850}{3} \approx 283.33
    • For month 9: 220+310+2403=7703256.67\frac{220 + 310 + 240}{3} = \frac{770}{3} \approx 256.67
    • For month 10: 310+240+3103=8603286.67\frac{310 + 240 + 310}{3} = \frac{860}{3} \approx 286.67
    • For month 11: 240+310+2403=7903263.33\frac{240 + 310 + 240}{3} = \frac{790}{3} \approx 263.33

    The three-month moving averages are:
    273.33,280,256.67,286.67,273.33,283.33,256.67,286.67,263.33273.33, 280, 256.67, 286.67, 273.33, 283.33, 256.67, 286.67, 263.33

  2. Exponential Smoothing: Using α=0.2\alpha = 0.2, we need to apply exponential smoothing to forecast future values. The formula is: St=αXt+(1α)St1S_t = \alpha \cdot X_t + (1 - \alpha) \cdot S_{t-1} where StS_t is the smoothed value at time tt, and XtX_t is the actual value at time tt. We will take the first observation as the initial smoothed value. Let's start:

    • S1=240S_1 = 240 (initial value)
    • S2=0.2×350+0.8×240=270S_2 = 0.2 \times 350 + 0.8 \times 240 = 270
    • S3=0.2×230+0.8×270=262S_3 = 0.2 \times 230 + 0.8 \times 270 = 262
    • S4=0.2×260+0.8×262=261.6S_4 = 0.2 \times 260 + 0.8 \times 262 = 261.6
    • S5=0.2×280+0.8×261.6=265.28S_5 = 0.2 \times 280 + 0.8 \times 261.6 = 265.28
    • (S_6 = 0.2 \times 320 +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Time Series Analysis
Moving Average
Exponential Smoothing

Formulas

Three-Month Moving Average: (X_t + X_{t-1} + X_{t-2}) / 3
Exponential Smoothing: S_t = α * X_t + (1 - α) * S_{t-1}

Theorems

-

Suitable Grade Level

Grade 11-12