Math Problem Statement

Un rayo de luz verde (λ = 450 nm) incide perpendicularmente sobre una película delgada de índice 1,3. Dicha película tiene por encima aire y por debajo, vidrio, de n = 1.5. ¿Cuál es el espesor más pequeño no nulo de película para el cual un punto de transmisión aparece obscuro? (Dibujar los rayos que interfieren claramente y expresar las fases de cada uno de ellos).

Solution

The problem involves thin-film interference, where light reflects off both the top and bottom surfaces of a thin film. The goal is to determine the smallest non-zero film thickness for which destructive interference occurs (resulting in darkness).


Step 1: Understanding the Setup

  1. A green light ray of wavelength λ=450nm\lambda = 450 \, \text{nm} strikes a thin film perpendicularly.
  2. The refractive index of the film is n=1.3n = 1.3, and it is sandwiched between:
    • Air above (nair=1n_{\text{air}} = 1),
    • Glass below (nglass=1.5n_{\text{glass}} = 1.5).

When light reflects off boundaries with different indices, the phase changes must be considered:

  • At the air-film interface (nair<nfilmn_{\text{air}} < n_{\text{film}}): Phase shift of π\pi (half-wavelength shift).
  • At the film-glass interface (nfilm<nglassn_{\text{film}} < n_{\text{glass}}): Phase shift of π\pi again.

Thus, both reflected rays undergo a phase shift of π\pi.


Step 2: Destructive Interference Condition

For destructive interference in thin films, the optical path difference (OPD) between the two reflected rays must satisfy:

2tnfilm=mλfilm,2 t n_{\text{film}} = m \lambda_{\text{film}}, where:

  • tt is the thickness of the film,
  • nfilm=1.3n_{\text{film}} = 1.3 is the refractive index,
  • λfilm\lambda_{\text{film}} is the wavelength of light inside the film,
  • mm is an integer (m=0,1,2,m = 0, 1, 2, \dots).

The wavelength inside the film is given by:

λfilm=λairnfilm=450nm1.3.\lambda_{\text{film}} = \frac{\lambda_{\text{air}}}{n_{\text{film}}} = \frac{450 \, \text{nm}}{1.3}.


Step 3: Solving for Minimum Thickness tt

The smallest non-zero thickness tt corresponds to m=1m = 1 (first order):

2tnfilm=λfilm.2 t n_{\text{film}} = \lambda_{\text{film}}.

Substitute values:

2t(1.3)=450nm1.3.2 t (1.3) = \frac{450 \, \text{nm}}{1.3}.

Simplify:

t=4501.32(1.3).t = \frac{\frac{450}{1.3}}{2 (1.3)}.

t=4502(1.3)2.t = \frac{450}{2 (1.3)^2}.

t=4502×1.69.t = \frac{450}{2 \times 1.69}.

t4503.38.t \approx \frac{450}{3.38}.

t133.14nm.t \approx 133.14 \, \text{nm}.


Final Answer:

The smallest non-zero thickness of the film for destructive interference is approximately:

t133nm.t \approx 133 \, \text{nm}.


Phase Explanation:

  • Both reflections at the air-film and film-glass interfaces undergo a phase shift of π\pi.
  • The condition for destructive interference depends only on the optical path difference, as phase shifts are identical.

Follow-Up Questions:

  1. How does the refractive index affect the wavelength of light in a material?
  2. Why do phase changes occur at interfaces with different refractive indices?
  3. How would the result change if the light were not normal to the surface?
  4. What happens if the refractive index of the film increases?
  5. Can constructive interference occur in the same thin film? Under what condition?

Tip: For thin films, always consider both phase shifts and path differences to determine interference conditions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Thin-film interference
Phase shifts
Optical path difference

Formulas

2tn_film = mλ_film
λ_film = λ_air / n_film

Theorems

Thin-film destructive interference conditions
Phase shifts at boundaries (π shift for n_air < n_film and n_film < n_glass)

Suitable Grade Level

University Physics or Advanced High School Physics