Math Problem Statement

Find a tangent vector at the indicated value of t.

r(t) = 3eti + 4e−3tj + 2e4tk;  t = ln(2)

Solution

To find the tangent vector to the vector-valued function r(t)=3eti+4e3tj+2e4tk\mathbf{r}(t) = 3e^t\, \mathbf{i} + 4e^{-3t}\, \mathbf{j} + 2e^{4t}\, \mathbf{k} at t=ln(2)t = \ln(2), we need to follow these steps:

Step 1: Find the derivative of r(t)\mathbf{r}(t)

The tangent vector is the derivative of the position vector r(t)\mathbf{r}(t), denoted r(t)\mathbf{r}'(t). We differentiate each component of the vector function.

r(t)=3eti+4e3tj+2e4tk\mathbf{r}(t) = 3e^t\, \mathbf{i} + 4e^{-3t}\, \mathbf{j} + 2e^{4t}\, \mathbf{k}

Component-wise derivatives:

  1. For the i\mathbf{i}-component: ddt(3et)=3et\frac{d}{dt}(3e^t) = 3e^t
  2. For the j\mathbf{j}-component: ddt(4e3t)=4(3e3t)=12e3t\frac{d}{dt}(4e^{-3t}) = 4(-3e^{-3t}) = -12e^{-3t}
  3. For the k\mathbf{k}-component: ddt(2e4t)=2(4e4t)=8e4t\frac{d}{dt}(2e^{4t}) = 2(4e^{4t}) = 8e^{4t}

Thus, the derivative of r(t)\mathbf{r}(t) is: r(t)=3eti12e3tj+8e4tk\mathbf{r}'(t) = 3e^t\, \mathbf{i} - 12e^{-3t}\, \mathbf{j} + 8e^{4t}\, \mathbf{k}

Step 2: Evaluate the derivative at t=ln(2)t = \ln(2)

Substitute t=ln(2)t = \ln(2) into r(t)\mathbf{r}'(t).

  1. et=eln(2)=2e^t = e^{\ln(2)} = 2
  2. e3t=e3ln(2)=23=18e^{-3t} = e^{-3\ln(2)} = 2^{-3} = \frac{1}{8}
  3. e4t=e4ln(2)=24=16e^{4t} = e^{4\ln(2)} = 2^4 = 16

Now, substitute these values into r(t)\mathbf{r}'(t): r(ln(2))=3(2)i12(18)j+8(16)k\mathbf{r}'(\ln(2)) = 3(2)\, \mathbf{i} - 12\left(\frac{1}{8}\right)\, \mathbf{j} + 8(16)\, \mathbf{k} r(ln(2))=6i128j+128k\mathbf{r}'(\ln(2)) = 6\, \mathbf{i} - \frac{12}{8}\, \mathbf{j} + 128\, \mathbf{k} r(ln(2))=6i1.5j+128k\mathbf{r}'(\ln(2)) = 6\, \mathbf{i} - 1.5\, \mathbf{j} + 128\, \mathbf{k}

Final Answer:

The tangent vector at t=ln(2)t = \ln(2) is: r(ln(2))=6i1.5j+128k\mathbf{r}'(\ln(2)) = 6\, \mathbf{i} - 1.5\, \mathbf{j} + 128\, \mathbf{k}

Would you like further details on this solution?


Here are 5 related questions to deepen understanding:

  1. How is the derivative of a vector function different from a scalar function?
  2. What is the geometric interpretation of the tangent vector?
  3. Can you find the magnitude of the tangent vector r(ln(2))\mathbf{r}'(\ln(2))?
  4. What happens to the tangent vector if we change the function r(t)\mathbf{r}(t) slightly?
  5. How do you compute the unit tangent vector from the tangent vector?

Tip: The derivative of a vector-valued function gives the direction and rate of change of the position vector, pointing in the direction of the tangent at any given point.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Derivatives of Vector Functions

Formulas

Derivative of a vector-valued function
e^x (exponential function differentiation)
r'(t) = d/dt [r(t)]

Theorems

Chain Rule for differentiation
Exponential Function Properties

Suitable Grade Level

Grades 11-12, College Calculus