Math Problem Statement

Find a tangent vector at the indicated value of t.

r(t) = 3eti + 4e−3tj + 2e4tk;  t = ln(2)

Solution

To find the tangent vector of the given vector function r(t)=3eti+4e3tj+2e4tk\mathbf{r}(t) = 3e^t \mathbf{i} + 4e^{-3t} \mathbf{j} + 2e^{4t} \mathbf{k} at t=ln(2)t = \ln(2), we need to:

  1. Differentiate r(t)\mathbf{r}(t) with respect to tt to get the velocity (tangent) vector.
  2. Evaluate the result at t=ln(2)t = \ln(2).

Step 1: Differentiate r(t)\mathbf{r}(t)

Given r(t)=3eti+4e3tj+2e4tk\mathbf{r}(t) = 3e^t \mathbf{i} + 4e^{-3t} \mathbf{j} + 2e^{4t} \mathbf{k}, we differentiate each component with respect to tt.

ddt(3et)=3et\frac{d}{dt} (3e^t) = 3e^t ddt(4e3t)=4(3)e3t=12e3t\frac{d}{dt} (4e^{-3t}) = 4(-3)e^{-3t} = -12e^{-3t} ddt(2e4t)=2(4)e4t=8e4t\frac{d}{dt} (2e^{4t}) = 2(4)e^{4t} = 8e^{4t}

Thus, the derivative (tangent vector) is:

r(t)=3eti12e3tj+8e4tk\mathbf{r}'(t) = 3e^t \mathbf{i} - 12e^{-3t} \mathbf{j} + 8e^{4t} \mathbf{k}

Step 2: Evaluate at t=ln(2)t = \ln(2)

Now substitute t=ln(2)t = \ln(2) into r(t)\mathbf{r}'(t).

  1. eln(2)=2e^{\ln(2)} = 2
  2. e3ln(2)=23=18e^{-3\ln(2)} = 2^{-3} = \frac{1}{8}
  3. e4ln(2)=24=16e^{4\ln(2)} = 2^4 = 16

Substitute these into the components of r(t)\mathbf{r}'(t):

r(ln(2))=3(2)i12(18)j+8(16)k\mathbf{r}'(\ln(2)) = 3(2) \mathbf{i} - 12\left(\frac{1}{8}\right) \mathbf{j} + 8(16) \mathbf{k}

Simplifying:

r(ln(2))=6i128j+128k\mathbf{r}'(\ln(2)) = 6 \mathbf{i} - \frac{12}{8} \mathbf{j} + 128 \mathbf{k}

r(ln(2))=6i1.5j+128k\mathbf{r}'(\ln(2)) = 6 \mathbf{i} - 1.5 \mathbf{j} + 128 \mathbf{k}

Final Answer:

The tangent vector at t=ln(2)t = \ln(2) is:

r(ln(2))=6i1.5j+128k\mathbf{r}'(\ln(2)) = 6 \mathbf{i} - 1.5 \mathbf{j} + 128 \mathbf{k}

Would you like more details or have any questions?

Related Questions:

  1. How do you find the unit tangent vector of a vector function?
  2. What is the significance of the tangent vector in 3D space?
  3. How do you compute the magnitude of a tangent vector?
  4. How does the exponential function behave under differentiation?
  5. What are the differences between velocity and acceleration vectors?

Tip:

When differentiating vector functions, apply the derivative to each component separately, as if they were scalar functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Vector Calculus
Exponential Functions

Formulas

d/dt (3e^t) = 3e^t
d/dt (4e^−3t) = -12e^−3t
d/dt (2e^4t) = 8e^4t

Theorems

The Chain Rule of Differentiation

Suitable Grade Level

University Level (Calculus II or Multivariable Calculus)