Math Problem Statement

Determine the equations of the tangent and normal lines at P(1,1) given by x^3y - 2xy^2 + x^2 -3y +3 =0

Solution

To find the equations of the tangent and normal lines to the curve at point P(1,1)P(1,1), given by the equation:

x3y2xy2+x23y+3=0x^3 y - 2xy^2 + x^2 - 3y + 3 = 0

we'll proceed with these steps:

Step 1: Differentiate the Equation Implicitly

We need to implicitly differentiate the equation with respect to xx to find the slope of the tangent line.

Given: f(x,y)=x3y2xy2+x23y+3=0f(x, y) = x^3 y - 2xy^2 + x^2 - 3y + 3 = 0

Differentiating f(x,y)=0f(x, y) = 0 with respect to xx: ddx(x3y)ddx(2xy2)+ddx(x2)ddx(3y)+ddx(3)=0\frac{d}{dx}(x^3 y) - \frac{d}{dx}(2xy^2) + \frac{d}{dx}(x^2) - \frac{d}{dx}(3y) + \frac{d}{dx}(3) = 0

Applying the product rule to each term:

  1. ddx(x3y)=3x2y+x3dydx\frac{d}{dx}(x^3 y) = 3x^2 y + x^3 \frac{dy}{dx}
  2. ddx(2xy2)=2y2+2x(2ydydx)\frac{d}{dx}(2xy^2) = 2y^2 + 2x(2y \frac{dy}{dx})
  3. ddx(x2)=2x\frac{d}{dx}(x^2) = 2x
  4. ddx(3y)=3dydx\frac{d}{dx}(3y) = 3 \frac{dy}{dx}
  5. ddx(3)=0\frac{d}{dx}(3) = 0

So we have: 3x2y+x3dydx2y24xydydx+2x3dydx=03x^2 y + x^3 \frac{dy}{dx} - 2y^2 - 4xy \frac{dy}{dx} + 2x - 3 \frac{dy}{dx} = 0

Step 2: Substitute Point P(1,1)P(1,1) and Solve for dydx\frac{dy}{dx}

At P(1,1)P(1,1), substitute x=1x = 1 and y=1y = 1:

  1. 3(1)2(1)=33(1)^2(1) = 3
  2. (1)3dydx=dydx(1)^3 \frac{dy}{dx} = \frac{dy}{dx}
  3. 2(1)2=2- 2(1)^2 = -2
  4. 4(1)(1)dydx=4dydx- 4(1)(1) \frac{dy}{dx} = -4 \frac{dy}{dx}
  5. 2(1)=22(1) = 2
  6. 3dydx=3dydx- 3 \frac{dy}{dx} = -3 \frac{dy}{dx}

Substitute these values into the differentiated equation: 3+dydx24dydx+23dydx=03 + \frac{dy}{dx} - 2 - 4 \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} = 0

Combine terms: 32+2+(143)dydx=03 - 2 + 2 + (1 - 4 - 3) \frac{dy}{dx} = 0

Simplify: 34dydx=03 - 4 \frac{dy}{dx} = 0

Thus: [ \frac{dy}{dx}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Implicit Differentiation
Tangents and Normals

Formulas

Implicit differentiation: d/dx(f(x, y) = 0)
Slope of tangent line: dy/dx
Equation of tangent line: y = mx + b
Equation of normal line: y = -1/m(x - x1) + y1

Theorems

Product Rule
Chain Rule

Suitable Grade Level

Grades 11-12