Math Problem Statement

Write the equation of the line tangent to the graph of r =2cosθ when θ=7π/4

Solution

To find the equation of the line tangent to the polar curve r=2cosθr = 2\cos\theta at θ=7π4\theta = \frac{7\pi}{4}, we need to follow these steps:

1. Convert to Cartesian Coordinates

To write the equation of the tangent line in Cartesian form, we'll first need to express the polar curve r=2cosθr = 2\cos\theta in Cartesian coordinates. The standard conversions are:

x=rcosθandy=rsinθx = r\cos\theta \quad \text{and} \quad y = r\sin\theta

For the point at θ=7π4\theta = \frac{7\pi}{4}, we calculate rr and convert it to Cartesian form.

  • r=2cos(7π4)r = 2\cos\left(\frac{7\pi}{4}\right)
  • cos(7π4)=12\cos\left(\frac{7\pi}{4}\right) = \frac{1}{\sqrt{2}}, so: r=212=2r = 2 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}

Thus, the polar point (2,7π4)(\sqrt{2}, \frac{7\pi}{4}) corresponds to the Cartesian point:

x=2cos(7π4)=212=1x = \sqrt{2}\cos\left(\frac{7\pi}{4}\right) = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 y=2sin(7π4)=2(12)=1y = \sqrt{2}\sin\left(\frac{7\pi}{4}\right) = \sqrt{2} \cdot \left(-\frac{1}{\sqrt{2}}\right) = -1

So, the Cartesian coordinates of the point are (1,1)(1, -1).

2. Find the Slope of the Tangent Line

To find the slope of the tangent line at θ=7π4\theta = \frac{7\pi}{4}, we can use the following formula for the slope of the tangent line to a polar curve:

dydx=drdθsinθ+rcosθdrdθcosθrsinθ\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}

First, compute drdθ\frac{dr}{d\theta} for r=2cosθr = 2\cos\theta:

drdθ=2sinθ\frac{dr}{d\theta} = -2\sin\theta

Now, substitute θ=7π4\theta = \frac{7\pi}{4} into the expression for dydx\frac{dy}{dx}:

dydx=(2sin(7π4))sin(7π4)+2cos(7π4)cos(7π4)(2sin(7π4))cos(7π4)2cos(7π4)sin(7π4)\frac{dy}{dx} = \frac{(-2\sin\left(\frac{7\pi}{4}\right))\sin\left(\frac{7\pi}{4}\right) + 2\cos\left(\frac{7\pi}{4}\right)\cos\left(\frac{7\pi}{4}\right)}{(-2\sin\left(\frac{7\pi}{4}\right))\cos\left(\frac{7\pi}{4}\right) - 2\cos\left(\frac{7\pi}{4}\right)\sin\left(\frac{7\pi}{4}\right)}

Substituting sin(7π4)=12\sin\left(\frac{7\pi}{4}\right) = -\frac{1}{\sqrt{2}} and cos(7π4)=12\cos\left(\frac{7\pi}{4}\right) = \frac{1}{\sqrt{2}}:

dydx=(212)12+21212(212)1221212\frac{dy}{dx} = \frac{(-2 \cdot -\frac{1}{\sqrt{2}}) \cdot -\frac{1}{\sqrt{2}} + 2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{(-2 \cdot -\frac{1}{\sqrt{2}}) \cdot \frac{1}{\sqrt{2}} - 2 \cdot \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}}

Simplify the expression:

dydx=212+212212+212=1+11+1=22=1\frac{dy}{dx} = \frac{2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2}}{2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2}} = \frac{1 + 1}{1 + 1} = \frac{2}{2} = 1

So, the slope of the tangent line is 1.

3. Equation of the Tangent Line

The tangent line passes through the point (1,1)(1, -1) and has a slope of 1. The equation of the line is given by:

yy1=m(xx1)y - y_1 = m(x - x_1)

Substitute m=1m = 1, x1=1x_1 = 1, and y1=1y_1 = -1:

y+1=1(x1)y + 1 = 1(x - 1) y=x2y = x - 2

Thus, the equation of the tangent line is:

y=x2y = x - 2

Summary:

The equation of the tangent line to the curve r=2cosθr = 2\cos\theta at θ=7π4\theta = \frac{7\pi}{4} is:

y=x2y = x - 2

Would you like more details on any of these steps or concepts?


Here are 5 related questions:

  1. How do you find the tangent line to a parametric curve?
  2. How do you convert a polar equation to Cartesian coordinates?
  3. What is the relationship between polar and Cartesian coordinate systems?
  4. How is the derivative in polar coordinates calculated?
  5. How do you find the slope of a curve given in polar coordinates?

Tip: When working with polar coordinates, always convert to Cartesian if you need slopes or tangent lines for easier interpretation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Tangent Lines
Cartesian Coordinates

Formulas

x = r cosθ
y = r sinθ
Slope formula in polar coordinates: dy/dx = (dr/dθ sinθ + r cosθ) / (dr/dθ cosθ - r sinθ)
Equation of a line: y - y1 = m(x - x1)

Theorems

Polar to Cartesian Conversion
Tangent Line Theorem

Suitable Grade Level

Grades 11-12 or College Calculus