Math Problem Statement

Soal Latihan: Translating symbolic logic expressions to statements and converting verbal logic statements to symbols.

Solution

The image contains a set of logic and symbolic logic exercises in Indonesian. Here's a breakdown and translation:

Soal Latihan (Practice Questions)

1. Nyatakan dalam bentuk kalimat:

(Translate the following symbolic logic expressions into statements in words)

a. (x)(P(x)(y)P(y)x=y)(\exists x)(P(x) \land (\forall y)P(y) \Rightarrow x = y)
Translation:
"There exists an xx such that P(x)P(x) is true and for all yy, if P(y)P(y) is true, then x=yx = y."
Meaning: There is exactly one xx for which property P(x)P(x) is true.

b. (x)(y)(xyP(x)P(y))(\exists x)(\exists y)(x \neq y \land P(x) \land P(y))
Translation:
"There exist xx and yy such that xyx \neq y, and both P(x)P(x) and P(y)P(y) are true."
Meaning: There are at least two different values of xx and yy for which property PP holds.

2. Tulislah dalam bentuk simbol:

(Convert the following verbal statements into symbolic form)

a. Terdapat zz yang merupakan anggota HH dan bersifat PP.
Symbolic form:
(z)(zHP(z))(\exists z)(z \in H \land P(z))
(There exists a zz that is an element of HH and has property PP.)

b. Semua yy yang positif bersifat PP.
Symbolic form:
(y)(y>0P(y))(\forall y)(y > 0 \Rightarrow P(y))
(For all yy, if yy is positive, then P(y)P(y) is true.)

c. Paling banyak ada satu kk yang memenuhi sifat PP.
Symbolic form:
(k1)(k2)((P(k1)P(k2))k1=k2)(\forall k_1)(\forall k_2)((P(k_1) \land P(k_2)) \Rightarrow k_1 = k_2)
(At most one kk satisfies property PP, meaning if two values satisfy PP, they must be equal.)

d. Sekurang-kurangnya ada satu bilangan real yang memenuhi sifat QQ.
Symbolic form:
(xR)(Q(x))(\exists x \in \mathbb{R})(Q(x))
(There exists at least one real number that satisfies property QQ.)

e. Paling banyak ada satu kk bilangan positif yang memenuhi sifat PP.
Symbolic form:
(k1)(k2)((P(k1)k1>0P(k2)k2>0)k1=k2)(\forall k_1)(\forall k_2)((P(k_1) \land k_1 > 0 \land P(k_2) \land k_2 > 0) \Rightarrow k_1 = k_2)
(At most one positive number kk satisfies property PP.)

f. Hanya terdapat satu aa yang memenuhi PP.
Symbolic form:
(!a)(P(a))(\exists! a)(P(a))
(There exists exactly one aa that satisfies property PP.)

g. Terdapat bilangan LL yang memenuhi di mana untuk setiap bilangan positif ϵ\epsilon terdapat bilangan positif δ\delta yang bersifat δ<ϵ|\delta| < \epsilon.
Symbolic form:
(L)(ϵ>0)(δ>0)(δ<ϵ)(\exists L)(\forall \epsilon > 0)(\exists \delta > 0)(|\delta| < \epsilon)
(There exists a number LL such that for every positive number ϵ\epsilon, there exists a positive δ\delta such that δ<ϵ|\delta| < \epsilon.)


Would you like further details on any specific part or additional examples? Here are some related questions to expand your understanding:

  1. How does the uniqueness quantifier !\exists! differ from the existential quantifier \exists?
  2. What is the logical implication (\Rightarrow) used for in these symbolic forms?
  3. Can you provide a real-world example where the statement "There exists at least one real number satisfying property QQ" might apply?
  4. How would you rewrite the expression (y)(y>0P(y))(\forall y)(y > 0 \Rightarrow P(y)) in terms of set notation?
  5. What is the significance of δ<ϵ|\delta| < \epsilon in mathematical analysis?

Tip: When translating logic statements, always focus on the quantifiers (,\forall, \exists) and connectives (,,\land, \lor, \Rightarrow) to maintain the correct meaning of the original statement.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Symbolic Logic
Quantifiers (∃, ∀)
Logical Connectives (∧, ∨, ⇒)
Set Theory

Formulas

(∃x)(P(x) ∧ (∀y)P(y) ⇒ x = y)
(∃x)(∃y)(x ≠ y ∧ P(x) ∧ P(y))
(∃z)(z ∈ H ∧ P(z))
(∀y)(y > 0 ⇒ P(y))
(∀k1)(∀k2)((P(k1) ∧ P(k2)) ⇒ k1 = k2)
(∃x ∈ ℝ)(Q(x))
(∃L)(∀ε > 0)(∃δ > 0)(|δ| < ε)

Theorems

Uniqueness Quantifier (∃!)
Existence Quantifier (∃)
Implication (⇒) in Logic

Suitable Grade Level

Undergraduate (Discrete Mathematics, Logic)