Math Problem Statement

Evaluate the surface integral \( \iint_S f(x, y, z) \, dS \), where \( f(x, y, z) = x^2 + y^2 + z^2 \), and the surface \( S \) is defined by \( z = x + y \), constrained by \( x^2 + y^2 \leq 1 \).

Solution

To evaluate the given surface integral:

Sf(x,y,z)dS,where f(x,y,z)=x2+y2+z2,\iint_S f(x, y, z) \, dS, \quad \text{where } f(x, y, z) = x^2 + y^2 + z^2, and SS is the surface defined by z=x+yz = x + y, constrained by x2+y21x^2 + y^2 \leq 1.

Step 1: Surface Parameterization

The surface SS can be parameterized in terms of xx and yy: r(x,y)=x,y,x+y.\vec{r}(x, y) = \langle x, y, x + y \rangle. Here, x2+y21x^2 + y^2 \leq 1 defines a circular region in the x-yx\text{-}y plane.

Step 2: Compute the Surface Element dSdS

The surface element dSdS is obtained as: dS=rx×rydxdy.dS = \|\vec{r}_x \times \vec{r}_y\| \, dx \, dy.

  1. Compute partial derivatives: rx=1,0,1,ry=0,1,1.\vec{r}_x = \langle 1, 0, 1 \rangle, \quad \vec{r}_y = \langle 0, 1, 1 \rangle.

  2. Compute the cross product rx×ry\vec{r}_x \times \vec{r}_y:

    \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \langle -1, -1, 1 \rangle.$$
  3. Compute the magnitude: rx×ry=(1)2+(1)2+(1)2=3.\|\vec{r}_x \times \vec{r}_y\| = \sqrt{(-1)^2 + (-1)^2 + (1)^2} = \sqrt{3}.

Thus, dS=3dxdydS = \sqrt{3} \, dx \, dy.

Step 3: Express the Integral

Substitute z=x+yz = x + y into f(x,y,z)f(x, y, z): f(x,y,z)=x2+y2+z2=x2+y2+(x+y)2=x2+y2+x2+2xy+y2=2x2+2y2+2xy.f(x, y, z) = x^2 + y^2 + z^2 = x^2 + y^2 + (x + y)^2 = x^2 + y^2 + x^2 + 2xy + y^2 = 2x^2 + 2y^2 + 2xy.

The integral becomes: Sf(x,y,z)dS=x2+y21(2x2+2y2+2xy)3dxdy.\iint_S f(x, y, z) \, dS = \iint_{x^2 + y^2 \leq 1} \left( 2x^2 + 2y^2 + 2xy \right) \sqrt{3} \, dx \, dy.

Step 4: Switch to Polar Coordinates

Convert to polar coordinates: x=rcosθ,y=rsinθ,x2+y2=r2,dxdy=rdrdθ.x = r\cos\theta, \quad y = r\sin\theta, \quad x^2 + y^2 = r^2, \quad dx \, dy = r \, dr \, d\theta.

Substitute into the integral: 2x2+2y2+2xy=2r2+2r2cosθsinθ=2r2+r2sin(2θ).2x^2 + 2y^2 + 2xy = 2r^2 + 2r^2\cos\theta\sin\theta = 2r^2 + r^2\sin(2\theta).

The integral becomes: 3x2+y21(2r2+r2sin(2θ))rdrdθ.\sqrt{3} \iint_{x^2 + y^2 \leq 1} \left( 2r^2 + r^2\sin(2\theta) \right) r \, dr \, d\theta.

Split the integral: 302π01(2r3+r3sin(2θ))drdθ=3(02π012r3drdθ+02π01r3sin(2θ)drdθ).\sqrt{3} \int_0^{2\pi} \int_0^1 \left( 2r^3 + r^3\sin(2\theta) \right) \, dr \, d\theta = \sqrt{3} \left( \int_0^{2\pi} \int_0^1 2r^3 \, dr \, d\theta + \int_0^{2\pi} \int_0^1 r^3\sin(2\theta) \, dr \, d\theta \right).

Step 5: Evaluate the Integrals

  1. First term: 012r3dr=2r4401=12.\int_0^1 2r^3 \, dr = 2 \cdot \frac{r^4}{4} \Big|_0^1 = \frac{1}{2}. The θ\theta-integral is: 02π12dθ=122π=π.\int_0^{2\pi} \frac{1}{2} \, d\theta = \frac{1}{2} \cdot 2\pi = \pi.

  2. Second term: The rr-integral is the same: 01r3dr=14.\int_0^1 r^3 \, dr = \frac{1}{4}. For the θ\theta-integral: 02πsin(2θ)dθ=0(since sine integrates to 0 over a full period).\int_0^{2\pi} \sin(2\theta) \, d\theta = 0 \quad \text{(since sine integrates to 0 over a full period)}.

Thus, the second term vanishes.

Step 6: Final Answer

The surface integral evaluates to: 3π.\boxed{\sqrt{3} \pi}.

Would you like further details or have any questions?

Here are 5 related questions for exploration:

  1. What is the physical significance of surface integrals in physics?
  2. How do we handle surface integrals for parametric surfaces not aligned with coordinate planes?
  3. Can you derive the formula for ru×rv\|\vec{r}_u \times \vec{r}_v\|?
  4. What are the conditions under which a surface integral can be evaluated using Stokes' Theorem?
  5. How would the computation change if f(x,y,z)f(x, y, z) were a vector field?

Tip: When switching to polar coordinates, always adjust dxdydx\,dy to rdrdθr \, dr \, d\theta carefully to avoid errors in the Jacobian transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface Integrals
Polar Coordinates
Vector Calculus
Parametric Surfaces
Cross Product
Double Integrals

Formulas

\iint_S f(x, y, z) \, dS
dS = \|\vec{r}_x \times \vec{r}_y\| \, dx \, dy
x = r\cos\theta, \quad y = r\sin\theta
2x^2 + 2y^2 + 2xy = 2r^2 + r^2\sin(2\theta)

Theorems

Surface Integral Theorem
Stokes' Theorem
Change of Variables in Double Integrals

Suitable Grade Level

Grades 12-14 (University level)