Math Problem Statement
Find the area of the surface generated when the given curve is revolved about the given axis.
y equals left parenthesis 3 x right parenthesis Superscript one thirdy=(3x)13,
for
0 less than or equals x less than or equals StartFraction 125 Over 3 EndFraction0≤x≤1253;
about the y-axis
Question content area bottom
Part 1
The surface area is
enter your response here
square units.
(Type an exact answer, using
piπ
as needed.)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Surface Area of Revolution
Definite Integral
Formulas
Surface area of revolution about the y-axis: S = 2π ∫ x √(1 + (dy/dx)^2) dx
Derivative of y = (3x)^(1/3): dy/dx = (1/3)(3x)^(-2/3)
Theorems
Surface Area of a Solid of Revolution
Suitable Grade Level
College Calculus
Related Recommendation
Surface Area of Revolution of y = (1/3) * x^(3/2) Rotated About the y-axis
Calculate Surface Area of Revolution for y = x^3/2 + 1/(6x) - 1/2
Surface Area of Revolution for x = (1/3)(y^2 + 2)^(3/2), 3 ≤ y ≤ 4
Find Surface Area of Revolution for y = x^3 about the x-axis
Surface Area of Revolution for y = 1/3 x^3 from 0 to 3