Math Problem Statement

Find the exact area of the surface obtained by rotating the curve about the x-axis.

x =

1

3

(y2 + 2)3/2,    3 ≤ y ≤ 4

Solution

We are tasked with finding the exact area of the surface generated by rotating the given curve about the x-axis. The curve is described by the function

x=13(y2+2)32,3y4.x = \frac{1}{3}(y^2 + 2)^{\frac{3}{2}}, \quad 3 \leq y \leq 4.

To find the surface area of a curve rotated about the x-axis, we use the surface area formula:

A=2πaby1+(dxdy)2dy.A = 2\pi \int_{a}^{b} y \sqrt{1 + \left( \frac{dx}{dy} \right)^2} \, dy.

Step 1: Differentiate x with respect to y

We begin by finding dxdy\frac{dx}{dy}. The given equation is:

x=13(y2+2)32.x = \frac{1}{3}(y^2 + 2)^{\frac{3}{2}}.

Differentiate xx with respect to yy:

dxdy=13ddy((y2+2)32).\frac{dx}{dy} = \frac{1}{3} \cdot \frac{d}{dy}\left( (y^2 + 2)^{\frac{3}{2}} \right).

Using the chain rule:

dxdy=1332(y2+2)122y=y(y2+2)12.\frac{dx}{dy} = \frac{1}{3} \cdot \frac{3}{2} (y^2 + 2)^{\frac{1}{2}} \cdot 2y = y (y^2 + 2)^{\frac{1}{2}}.

Step 2: Set up the surface area integral

Now, substitute this result into the surface area formula. The surface area is:

A=2π34y1+(y(y2+2)12)2dy.A = 2\pi \int_{3}^{4} y \sqrt{1 + \left( y (y^2 + 2)^{\frac{1}{2}} \right)^2} \, dy.

Simplify the expression inside the square root:

A=2π34y1+y2(y2+2)dy.A = 2\pi \int_{3}^{4} y \sqrt{1 + y^2 (y^2 + 2)} \, dy.

Simplify further:

A=2π34y1+y2(y2+2)=2π34y1+y4+2y2dy.A = 2\pi \int_{3}^{4} y \sqrt{1 + y^2(y^2 + 2)} = 2\pi \int_{3}^{4} y \sqrt{1 + y^4 + 2y^2} \, dy.

Thus, the expression inside the square root becomes:

A=2π34yy4+2y2+1dy=2π34y(y2+1)2dy.A = 2\pi \int_{3}^{4} y \sqrt{y^4 + 2y^2 + 1} \, dy = 2\pi \int_{3}^{4} y \sqrt{(y^2 + 1)^2} \, dy.

Since (y2+1)2=y2+1\sqrt{(y^2 + 1)^2} = y^2 + 1, the integral simplifies to:

A=2π34y(y2+1)dy.A = 2\pi \int_{3}^{4} y (y^2 + 1) \, dy.

Step 3: Compute the integral

Now, expand the integrand:

A=2π34(y3+y)dy.A = 2\pi \int_{3}^{4} (y^3 + y) \, dy.

Integrate term by term:

(y3+y)dy=y44+y22.\int (y^3 + y) \, dy = \frac{y^4}{4} + \frac{y^2}{2}.

Evaluate this from y=3y = 3 to y=4y = 4:

A=2π[(444+422)(344+322)].A = 2\pi \left[ \left( \frac{4^4}{4} + \frac{4^2}{2} \right) - \left( \frac{3^4}{4} + \frac{3^2}{2} \right) \right].

Calculate each term:

For y=4y = 4:

444+422=2564+162=64+8=72.\frac{4^4}{4} + \frac{4^2}{2} = \frac{256}{4} + \frac{16}{2} = 64 + 8 = 72.

For y=3y = 3:

344+322=814+92=20.25+4.5=24.75.\frac{3^4}{4} + \frac{3^2}{2} = \frac{81}{4} + \frac{9}{2} = 20.25 + 4.5 = 24.75.

Now subtract:

7224.75=47.25.72 - 24.75 = 47.25.

Step 4: Final surface area

Multiply by 2π2\pi:

A=2π×47.25=94.5π.A = 2\pi \times 47.25 = 94.5\pi.

Thus, the exact surface area is:

A=94.5π square units.A = 94.5\pi \text{ square units}.

Would you like more details on any of the steps, or further clarification?

Here are five related questions you could explore:

  1. How does the surface area formula change for rotation about the y-axis?
  2. What is the geometric interpretation of dxdy\frac{dx}{dy}?
  3. How would the surface area change if the curve were rotated about the y-axis instead of the x-axis?
  4. Can you find the arc length of the same curve for the same range of y?
  5. What happens to the surface area if we change the range of y to [2,4][2, 4]?

Tip: Always simplify the expression inside the square root before integrating; it makes the process much easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Surface Area of Revolution
Integration

Formulas

Surface Area Formula for revolution about x-axis: A = 2π ∫ y sqrt(1 + (dx/dy)^2) dy
Derivative of x with respect to y: dx/dy = y * sqrt(y^2 + 2)

Theorems

Chain Rule
Fundamental Theorem of Calculus

Suitable Grade Level

College-level Calculus