Math Problem Statement

Evaluate Sigma i=1 to 27 (i^3 -3t^2+5i)

Solution

To evaluate the summation:

i=127(i33t2+5i),\sum_{i=1}^{27} \left(i^3 - 3t^2 + 5i\right),

let's break it into parts. The summation can be separated into individual sums:

i=127(i33t2+5i)=i=127i3i=1273t2+i=1275i.\sum_{i=1}^{27} \left(i^3 - 3t^2 + 5i\right) = \sum_{i=1}^{27} i^3 - \sum_{i=1}^{27} 3t^2 + \sum_{i=1}^{27} 5i.

Step 1: Evaluate i=127i3\sum_{i=1}^{27} i^3

The formula for the sum of cubes is:

i=1ni3=(n(n+1)2)2.\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2.

For n=27n = 27:

i=127i3=(27(27+1)2)2=(27282)2=(378)2=142884.\sum_{i=1}^{27} i^3 = \left(\frac{27(27+1)}{2}\right)^2 = \left(\frac{27 \cdot 28}{2}\right)^2 = (378)^2 = 142884.

Step 2: Evaluate i=1273t2\sum_{i=1}^{27} 3t^2

Since 3t23t^2 is independent of ii, it can be factored out of the summation. There are 27 terms:

i=1273t2=273t2=81t2.\sum_{i=1}^{27} 3t^2 = 27 \cdot 3t^2 = 81t^2.

Step 3: Evaluate i=1275i\sum_{i=1}^{27} 5i

The formula for the sum of the first nn integers is:

i=1ni=n(n+1)2.\sum_{i=1}^n i = \frac{n(n+1)}{2}.

For n=27n = 27:

i=1275i=527(27+1)2=527282=5378=1890.\sum_{i=1}^{27} 5i = 5 \cdot \frac{27(27+1)}{2} = 5 \cdot \frac{27 \cdot 28}{2} = 5 \cdot 378 = 1890.

Combine the Results

Now, substitute the individual sums back into the original expression:

i=127(i33t2+5i)=i=127i3i=1273t2+i=1275i.\sum_{i=1}^{27} \left(i^3 - 3t^2 + 5i\right) = \sum_{i=1}^{27} i^3 - \sum_{i=1}^{27} 3t^2 + \sum_{i=1}^{27} 5i.

=14288481t2+1890.= 142884 - 81t^2 + 1890.

Final Answer:

14477481t2.\boxed{144774 - 81t^2}.

Would you like further steps broken down or questions answered?


Related Questions:

  1. How do you derive the formula for the sum of cubes?
  2. What is the general approach to split and simplify summations?
  3. How does the summation change if tt is a function of ii?
  4. Can this sum be simplified for large nn using approximations?
  5. How does the result change if the summation limits are altered?

Tip: Always check if terms in a summation can be separated into simpler independent parts for easier calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Summation
Polynomials
Arithmetic Series
Cubic Functions

Formulas

Sum of cubes: \(\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2\)
Sum of first n integers: \(\sum_{i=1}^n i = \frac{n(n+1)}{2}\)

Theorems

Summation properties: Distributive property for summations
Arithmetic sequence sum formula

Suitable Grade Level

Grades 9-12