Math Problem Statement
Find the sum of the arithmetic sequence 22, 11, 0, −11, …, −77. A. −198 B. −275 C. −297 D. −385
Solution
We are given an arithmetic sequence: 22, 11, 0, −11, …, −77, and asked to find the sum of the terms.
Step 1: Identify the necessary parameters
- First term (a): The first term is 22.
- Common difference (d): The difference between consecutive terms is:
- Last term (l): The last term given is −77.
Step 2: Find the number of terms (n)
The formula for the -th term of an arithmetic sequence is: We know that , , and . Substituting these values into the formula: Simplifying: Dividing both sides by -11: So, there are 10 terms in the sequence.
Step 3: Use the sum formula for an arithmetic sequence
The sum of the first terms of an arithmetic sequence is given by the formula: Substituting , , and :
Thus, the sum of the sequence is .
Do you want more details or have any other questions?
Here are some related questions for practice:
- Find the sum of the arithmetic sequence with first term 15, common difference -5, and last term -25.
- What is the sum of the first 20 terms of the arithmetic sequence where and ?
- How many terms are there in the arithmetic sequence 10, 7, 4, ..., -50?
- Find the sum of the arithmetic sequence: 3, 8, 13, ..., 98.
- Determine the common difference of an arithmetic sequence if the first term is 6 and the 10th term is -18.
Tip: Always check the number of terms in an arithmetic sequence before applying the sum formula!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Arithmetic Sequences
Summation
Formulas
Sum of an arithmetic sequence: Sn = (n / 2) * (a + l)
n-th term of an arithmetic sequence: an = a + (n - 1) * d
Theorems
Arithmetic Sequence Formula
Suitable Grade Level
Grades 9-12
Related Recommendation
Sum of Arithmetic Sequence: 22, 11, 0, -11, ..., -77
Find the 22nd term of an arithmetic sequence: -2, -5, -8, -11, -14, ...
Sum of Terms in an Arithmetic Sequence - Finding S11 for a Sequence with a5 = -3 and S7 = 21
Sum of Arithmetic Sequence 2 + 5 + 7 + ... + 77
Find the Sum of the First 36 Terms of an Arithmetic Sequence