Math Problem Statement
Misal X1, X2, . . . , Xn sampel acak dari distribusi dengan PDF f(x; θ) = θe−θx , 0 < x < ∞, θ > 0 dan 0 untuk x lainnya. Tunjukkan bahwa S = Pn i=1 Xi statistik cukup untuk θ.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Statistics
Likelihood Function
Sufficiency
Neyman-Pearson Factorization
Formulas
f(x; θ) = θe^{-θx}, 0 < x < ∞, θ > 0
Likelihood function: L(θ; x_1, x_2, ..., x_n) = θ^n e^{-θ∑x_i}
Theorems
Neyman-Pearson Factorization Criterion
Suitable Grade Level
Undergraduate Statistics
Related Recommendation
Sufficiency of Statistics for Exponential, Geometric, and Normal Distributions
Exponential Family and Sufficient Statistic for Given Distribution
Sufficient Statistic and Factorization for Log-Normal Distribution
Solving Sufficient Statistic Problems Using Theorems 10.4.5 and 10.4.6
Using Regular Exponential Family Properties to Solve Normal Distribution MLE