Math Problem Statement

Misal X1, X2, . . . , Xn sampel acak dari distribusi dengan PDF f(x; θ) = θe−θx , 0 < x < ∞, θ > 0 dan 0 untuk x lainnya. Tunjukkan bahwa S = Pn i=1 Xi statistik cukup untuk θ.

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Likelihood Function
Sufficiency
Neyman-Pearson Factorization

Formulas

f(x; θ) = θe^{-θx}, 0 < x < ∞, θ > 0
Likelihood function: L(θ; x_1, x_2, ..., x_n) = θ^n e^{-θ∑x_i}

Theorems

Neyman-Pearson Factorization Criterion

Suitable Grade Level

Undergraduate Statistics