Math Problem Statement
answer
Solution
Looking at the provided number line, the shaded region extends from to . The circle at is closed, meaning is included in the set, and the circle at is open, meaning is not included.
The correct inequality to express this set is:
Thus, the correct answer is option c.) .
Would you like more details on why this inequality notation is used? Here are some related questions you might explore:
- What is the difference between open and closed intervals on a number line?
- How are inequalities used to represent intervals?
- How would the inequality change if both circles were open?
- Can you graph an inequality with both closed endpoints?
- What is interval notation, and how does it relate to inequalities?
Tip: Remember, a closed circle on a number line means the endpoint is included, and an open circle means it’s not!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Inequalities
Real Number Line
Intervals
Formulas
Inequalities: a ≤ x < b
Set notation: {x | a ≤ x < b}
Theorems
The definition of inequalities on a real number line
Interval notation and open/closed intervals
Suitable Grade Level
Grades 6-8