Math Problem Statement

Find dz/dt given that z = cos(yx^2), where x = t^4 - 2t and y = 1 - t^6. Make sure the final answer is fully in terms of t.

Solution

To find dzdt\frac{dz}{dt}, we start with the given function:

z=cos(yx2)z = \cos(yx^2)

where x=t42tx = t^4 - 2t and y=1t6y = 1 - t^6.

First, compute dzdt\frac{dz}{dt} using the chain rule:

dzdt=sin(yx2)ddt(yx2).\frac{dz}{dt} = -\sin(yx^2) \cdot \frac{d}{dt}(yx^2).

Next, find the derivative of yx2yx^2:

yx2=yx2=(1t6)(t42t)2.yx^2 = y \cdot x^2 = (1 - t^6) \cdot (t^4 - 2t)^2.

Now, use the product rule to differentiate:

ddt(yx2)=ddt(1t6)(t42t)2+(1t6)ddt((t42t)2).\frac{d}{dt}(yx^2) = \frac{d}{dt}(1 - t^6) \cdot (t^4 - 2t)^2 + (1 - t^6) \cdot \frac{d}{dt}((t^4 - 2t)^2).

The derivative of 1t61 - t^6 is:

ddt(1t6)=6t5.\frac{d}{dt}(1 - t^6) = -6t^5.

The derivative of (t42t)2(t^4 - 2t)^2 is:

Let u=t42tu = t^4 - 2t, then (t42t)2=u2(t^4 - 2t)^2 = u^2, and use the chain rule:

ddt(u2)=2ududt.\frac{d}{dt}(u^2) = 2u \cdot \frac{du}{dt}.

dudt=ddt(t42t)=4t32.\frac{du}{dt} = \frac{d}{dt}(t^4 - 2t) = 4t^3 - 2.

Thus:

ddt(u2)=2(t42t)(4t32).\frac{d}{dt}(u^2) = 2(t^4 - 2t) \cdot (4t^3 - 2).

Putting it all together, we have:

ddt(yx2)=(6t5)(t42t)2+(1t6)(2(t42t)(4t32)).\frac{d}{dt}(yx^2) = (-6t^5)(t^4 - 2t)^2 + (1 - t^6)(2(t^4 - 2t)(4t^3 - 2)).

Then, multiply by sin(yx2)-\sin(yx^2) to find dzdt\frac{dz}{dt}:

dzdt=sin((1t6)(t42t)2)[(6t5)(t42t)2+(1t6)(2(t42t)(4t32))].\frac{dz}{dt} = -\sin((1 - t^6)(t^4 - 2t)^2) \left[ (-6t^5)(t^4 - 2t)^2 + (1 - t^6)(2(t^4 - 2t)(4t^3 - 2)) \right].

This expression is fully in terms of tt.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Chain Rule
Product Rule
Trigonometric Functions

Formulas

Chain rule: dz/dt = (dz/dy)(dy/dt) + (dz/dx)(dx/dt)
Product rule: d(uv)/dt = u'v + uv'
Derivative of cosine: d(cos(u))/dt = -sin(u) du/dt

Theorems

Chain Rule for Multivariable Calculus

Suitable Grade Level

Grades 11-12 or introductory college calculus