Math Problem Statement

Find the derivatives of the given mathematical expressions.

Solution

Let's solve the derivatives step by step for each part of the given problems:


a) y=5x45+10x7y = 5\sqrt[5]{x^4} + 10^x - 7

  • Rewrite 5x455\sqrt[5]{x^4} as 5x4/55x^{4/5}.

The derivative is: y=545x4/51+10xln(10)+0y' = 5 \cdot \frac{4}{5} x^{4/5 - 1} + 10^x \ln(10) + 0

Simplify: y=4x1/5+10xln(10)y' = 4x^{-1/5} + 10^x \ln(10)


b) y=1+3x13xy = \frac{1 + 3^x}{1 - 3^x}

Use the quotient rule: y=(13x)ddx(1+3x)(1+3x)ddx(13x)(13x)2y' = \frac{(1 - 3^x) \cdot \frac{d}{dx}(1 + 3^x) - (1 + 3^x) \cdot \frac{d}{dx}(1 - 3^x)}{(1 - 3^x)^2}

Compute the derivatives in the numerator: y=(13x)(0+3xln(3))(1+3x)(03xln(3))(13x)2y' = \frac{(1 - 3^x) \cdot (0 + 3^x \ln(3)) - (1 + 3^x) \cdot (0 - 3^x \ln(3))}{(1 - 3^x)^2}

Simplify: y=3xln(3)(13x)+3xln(3)(1+3x)(13x)2y' = \frac{3^x \ln(3)(1 - 3^x) + 3^x \ln(3)(1 + 3^x)}{(1 - 3^x)^2}

Combine terms: y=3xln(3)2(13x)2y' = \frac{3^x \ln(3) \cdot 2}{(1 - 3^x)^2}


c) y=cos(1+x)y = \cos\left(1 + \sqrt{x}\right)

Use the chain rule: y=sin(1+x)ddx(1+x)y' = -\sin\left(1 + \sqrt{x}\right) \cdot \frac{d}{dx}\left(1 + \sqrt{x}\right)

Compute the inner derivative: y=sin(1+x)12xy' = -\sin\left(1 + \sqrt{x}\right) \cdot \frac{1}{2\sqrt{x}}

Simplify: y=sin(1+x)2xy' = -\frac{\sin\left(1 + \sqrt{x}\right)}{2\sqrt{x}}


d) Parametric equations:

x=t44t,y=arctan(1t)x = t^4 - 4t, \quad y = \arctan\left(\frac{1}{t}\right)

We use the chain rule for yx=dydx=dydtdxdty'_x = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.

  1. Compute dxdt\frac{dx}{dt}: dxdt=4t34\frac{dx}{dt} = 4t^3 - 4

  2. Compute dydt\frac{dy}{dt}: y=arctan(1t)    dydt=11+(1t)2(1t2)y = \arctan\left(\frac{1}{t}\right) \quad \implies \quad \frac{dy}{dt} = \frac{1}{1 + \left(\frac{1}{t}\right)^2} \cdot \left(-\frac{1}{t^2}\right)

Simplify dydt\frac{dy}{dt}: dydt=1t2+1\frac{dy}{dt} = \frac{-1}{t^2 + 1}

  1. Compute yxy'_x: yx=1t2+14t34y'_x = \frac{\frac{-1}{t^2 + 1}}{4t^3 - 4}

Simplify: yx=1(t2+1)(4t34)y'_x = \frac{-1}{(t^2 + 1)(4t^3 - 4)}


Do you need further explanations or more steps detailed?


Related Questions:

  1. What is the chain rule, and how is it applied in derivative calculations?
  2. How do you simplify derivatives involving fractional exponents, such as in problem (a)?
  3. Why does the logarithmic function appear in derivatives of exponential terms like 10x10^x?
  4. How do you approach derivatives for parametric equations, like in problem (d)?
  5. What techniques are essential for solving trigonometric derivatives, such as cos\cos and arctan\arctan?

Tip:

When solving derivatives, always simplify terms step by step before applying the chain or quotient rule. It reduces errors and makes the computation clearer.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Derivatives
Exponential Functions
Trigonometric Functions
Parametric Equations
Chain Rule
Quotient Rule

Formulas

Derivative of x^n: nx^(n-1)
Quotient Rule: (u/v)' = (u'v - uv')/v^2
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)
Derivative of a^x: a^x * ln(a)
Derivative of cos(x): -sin(x)
Derivative of arctan(x): 1/(1+x^2)

Theorems

Power Rule
Chain Rule
Quotient Rule

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)