Math Problem Statement
% Parameters
m1 = 1; % Mass of the underwater body
m2 = 0.5; % Displaced water equivalent mass
K = 0.1; % Drag coefficient
g = 9.81; % Gravitational acceleration
% Equilibrium values (linearization point)
x1_e = 0;
x2_e = 0;
x3_e = 2 * pi; % Equilibrium angle (multiple of pi)
% State-space matrices A and B (computed manually or symbolically)
A = [0 1 0;
0 -K/m1 -(m2 - m1) * g / m1;
0 0 0];
B = [0;
1/m1;
0];
% Define state-space model
sys = ss(A, B, eye(3), 0);
% Display the state-space model
disp('State-space model:');
disp(sys);
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Control Theory
State-Space Representation
Formulas
State-space representation: x' = Ax + Bu
Theorems
Eigenvalue stability criteria
Suitable Grade Level
Undergraduate
Related Recommendation
Aircraft Motion Model: Corrected Equations and Canard Explosion Analysis
State-Space Model and LQR Control of a Nonlinear Cart-Pole System
Interconnected Inverted Pendulums: Lagrange Method, State-Space Representation & MATLAB Animation
Analyzing Aircraft Landing Gear Dynamics with Differential Equations
MATLAB Geodetic Coordinate Transformation using Bursa-Wolf Model