Math Problem Statement

For a standard normal distribution, find: P(z<-2.31 or z > -1.09)

Round your answer to at least three decimal places.

Solution

To solve P(z<2.31 or z>1.09)P(z < -2.31 \text{ or } z > -1.09) for a standard normal distribution, we can break it down into two parts:

  1. P(z<2.31)P(z < -2.31)
  2. P(z>1.09)P(z > -1.09)

Step 1: Find P(z<2.31)P(z < -2.31)

Using the standard normal distribution table or a calculator, we can find the cumulative probability for z=2.31z = -2.31:

P(z<2.31)0.0104P(z < -2.31) \approx 0.0104

Step 2: Find P(z>1.09)P(z > -1.09)

For P(z>1.09)P(z > -1.09), we first find the cumulative probability for z=1.09z = -1.09:

P(z<1.09)0.1379P(z < -1.09) \approx 0.1379

Since P(z>1.09)=1P(z<1.09)P(z > -1.09) = 1 - P(z < -1.09):

P(z>1.09)=10.1379=0.8621P(z > -1.09) = 1 - 0.1379 = 0.8621

Step 3: Combine the two parts

Now, we combine the two probabilities:

P(z<2.31 or z>1.09)=P(z<2.31)+P(z>1.09)P(z < -2.31 \text{ or } z > -1.09) = P(z < -2.31) + P(z > -1.09)

P(z<2.31 or z>1.09)=0.0104+0.8621=0.8725P(z < -2.31 \text{ or } z > -1.09) = 0.0104 + 0.8621 = 0.8725

Final Answer:

P(z<2.31 or z>1.09)0.873P(z < -2.31 \text{ or } z > -1.09) \approx 0.873

Would you like more details, or have any questions?

Here are 5 related questions to expand your understanding:

  1. How do you interpret a standard normal distribution curve?
  2. What is the significance of the z-score in probability?
  3. How do you calculate the cumulative probability for any z-score?
  4. What is the probability for the complement event P(z>2.31 and z<1.09)P(z > 2.31 \text{ and } z < -1.09)?
  5. How does the empirical rule (68-95-99.7) relate to this problem?

Tip: You can use z-tables, a calculator, or statistical software to find probabilities for any z-score in a standard normal distribution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Standard Normal Distribution
Z-scores

Formulas

P(z < -2.31 or z > -1.09) = P(z < -2.31) + P(z > -1.09)
P(z > a) = 1 - P(z < a)

Theorems

Standard Normal Distribution Properties
Complement Rule

Suitable Grade Level

Grades 10-12