Math Problem Statement

Kerjakan dari no 8-14.

Kerjakan dari no 8-14.

Solution

Let's work through the requested limit problems from number 8 to 14 step by step.

Problem 8:

limθ0sin2θsinθ\lim_{\theta \to 0} \frac{\sin 2\theta}{\sin \theta} Using the double-angle identity for sine, sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta), we rewrite the limit: limθ02sin(θ)cos(θ)sin(θ)\lim_{\theta \to 0} \frac{2\sin(\theta)\cos(\theta)}{\sin(\theta)} Simplifying: limθ02cos(θ)\lim_{\theta \to 0} 2\cos(\theta) Since cos(0)=1\cos(0) = 1, the limit is: 2\boxed{2}


Problem 9:

limθ0cot(πθ)sin(θ)2sec(θ)\lim_{\theta \to 0} \frac{\cot(\pi \theta) \sin(\theta)}{2\sec(\theta)} We know that cot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)} and sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}, so substitute these into the limit: limθ0cos(πθ)sin(πθ)sin(θ)21cos(θ)\lim_{\theta \to 0} \frac{\frac{\cos(\pi \theta)}{\sin(\pi \theta)} \sin(\theta)}{2\frac{1}{\cos(\theta)}} Simplifying: limθ0cos(πθ)sin(θ)cos(θ)2sin(πθ)\lim_{\theta \to 0} \frac{\cos(\pi \theta)\sin(\theta)\cos(\theta)}{2\sin(\pi \theta)} As θ0\theta \to 0, both sin(θ)\sin(\theta) and sin(πθ)\sin(\pi \theta) tend to 0, but using L'Hopital's rule or small-angle approximations for sine and cosine, we can find: 0\boxed{0}


Problem 10:

limt0sin2(3t)2t\lim_{t \to 0} \frac{\sin^2(3t)}{2t} First, use the identity sin2(x)=(1cos(2x))/2\sin^2(x) = (1 - \cos(2x))/2 and substitute, or alternatively, factor the expression as follows: limt0sin(3t)tsin(3t)2\lim_{t \to 0} \frac{\sin(3t)}{t} \cdot \frac{\sin(3t)}{2} Using limt0sin(3t)t=3\lim_{t \to 0} \frac{\sin(3t)}{t} = 3, the limit becomes: 30=03 \cdot 0 = \boxed{0}


Problem 11:

limt0tan2(3t)2t\lim_{t \to 0} \frac{\tan^2(3t)}{2t} We can use the approximation tan(x)x\tan(x) \approx x when xx is small. Thus: limt0(3t)22t=limt09t22t=limt09t2=0\lim_{t \to 0} \frac{(3t)^2}{2t} = \lim_{t \to 0} \frac{9t^2}{2t} = \lim_{t \to 0} \frac{9t}{2} = 0 Thus, the limit is: 0\boxed{0}


Problem 12:

limθ0tan(2θ)sin(2θ)1\lim_{\theta \to 0} \frac{\tan(2\theta)}{\sin(2\theta) - 1} Using tan(x)x\tan(x) \approx x and sin(x)x\sin(x) \approx x for small angles: limθ02θ2θ1\lim_{\theta \to 0} \frac{2\theta}{2\theta - 1} At θ=0\theta = 0, the denominator becomes 1-1, so the limit is: 0\boxed{0}


Problem 13:

limt0sin(3t)+4ttsec(t)\lim_{t \to 0} \frac{\sin(3t) + 4t}{t \sec(t)} We use the small-angle approximation for sine and secant (sec(t)1+t2/2\sec(t) \approx 1 + t^2/2): limt03t+4tt(1)=limt07tt=7\lim_{t \to 0} \frac{3t + 4t}{t(1)} = \lim_{t \to 0} \frac{7t}{t} = 7 Thus, the limit is: 7\boxed{7}


Problem 14:

limθ0sin2(θ)θ2\lim_{\theta \to 0} \frac{\sin^2(\theta)}{\theta^2} We recognize this as a standard limit form. Since limθ0sin(θ)θ=1\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1, we have: limθ0sin2(θ)θ2=(limθ0sin(θ)θ)2=12=1\lim_{\theta \to 0} \frac{\sin^2(\theta)}{\theta^2} = \left( \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} \right)^2 = 1^2 = 1 Thus, the limit is: 1\boxed{1}


Would you like further details or have any questions about the steps?

Here are 5 related questions to explore:

  1. What is L'Hopital's Rule and how can it be applied to limits?
  2. How do approximations for small angles (sin(x)x\sin(x) \approx x, tan(x)x\tan(x) \approx x) help simplify limit problems?
  3. What is the significance of the standard limit limx0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1?
  4. How do trigonometric identities assist in solving complex limit problems?
  5. When do we need to use Taylor series expansions in evaluating limits?

Tip: When evaluating limits involving trigonometric functions, always check if small-angle approximations can simplify the expression!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Limits
L'Hopital's Rule
Small-Angle Approximations

Formulas

lim(θ→0) (sin θ)/θ = 1
lim(θ→0) (tan θ)/θ = 1
Double Angle Identities: sin(2θ) = 2sin(θ)cos(θ)
Trigonometric Identities: cot(x) = cos(x)/sin(x), sec(x) = 1/cos(x)

Theorems

L'Hopital's Rule
Small-Angle Approximation Theorem

Suitable Grade Level

College-Level Calculus or Advanced High School