Math Problem Statement

Triangle ∆ABC, hac B = 40◦, b = 8cm, and c = 11cm. Show that there are two possible values for C, and solve the triangle in each case. Solve the triangle means find all unknown sides and unknown angles.

Solution

Given the triangle ΔABC\Delta ABC with the following information:

  • B=40\angle B = 40^\circ
  • b=8 cmb = 8 \text{ cm}
  • c=11 cmc = 11 \text{ cm}

We need to find the two possible values of C\angle C, and then solve the triangle for each case, i.e., find the unknown sides and angles.

Step 1: Use the Law of Sines

We start with the Law of Sines:

bsinB=csinC\frac{b}{\sin B} = \frac{c}{\sin C}

Substitute the given values:

8sin40=11sinC\frac{8}{\sin 40^\circ} = \frac{11}{\sin C}

Step 2: Solve for sinC\sin C

sinC=11×sin408\sin C = \frac{11 \times \sin 40^\circ}{8}

Calculate sin40\sin 40^\circ first:

sin400.6428\sin 40^\circ \approx 0.6428

Now, calculate sinC\sin C:

sinC=11×0.642880.8839\sin C = \frac{11 \times 0.6428}{8} \approx 0.8839

Step 3: Determine the Possible Values of C\angle C

Since sinC0.8839\sin C \approx 0.8839, C\angle C can have two possible values:

  1. C1=arcsin(0.8839)\angle C_1 = \arcsin(0.8839)
  2. C2=180arcsin(0.8839)\angle C_2 = 180^\circ - \arcsin(0.8839)

Let's calculate these angles:

  1. C1arcsin(0.8839)62.3\angle C_1 \approx \arcsin(0.8839) \approx 62.3^\circ
  2. C2=18062.3=117.7\angle C_2 = 180^\circ - 62.3^\circ = 117.7^\circ

So, the two possible values for C\angle C are 62.362.3^\circ and 117.7117.7^\circ.

Step 4: Solve the Triangle for Each Case

Case 1: C=62.3\angle C = 62.3^\circ

  • Find A\angle A: A=180BC=1804062.3=77.7\angle A = 180^\circ - \angle B - \angle C = 180^\circ - 40^\circ - 62.3^\circ = 77.7^\circ

  • Use the Law of Sines to find aa: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B} a=8×sin77.7sin40a = \frac{8 \times \sin 77.7^\circ}{\sin 40^\circ} sin77.70.9797\sin 77.7^\circ \approx 0.9797 a8×0.97970.642812.2 cma \approx \frac{8 \times 0.9797}{0.6428} \approx 12.2 \text{ cm}

So, the triangle with C=62.3\angle C = 62.3^\circ has:

  • A=77.7\angle A = 77.7^\circ
  • a12.2 cma \approx 12.2 \text{ cm}

Case 2: C=117.7\angle C = 117.7^\circ

  • Find A\angle A: A=180BC=18040117.7=22.3\angle A = 180^\circ - \angle B - \angle C = 180^\circ - 40^\circ - 117.7^\circ = 22.3^\circ

  • Use the Law of Sines to find aa: a=8×sin22.3sin40a = \frac{8 \times \sin 22.3^\circ}{\sin 40^\circ} sin22.30.3790\sin 22.3^\circ \approx 0.3790 a8×0.37900.64284.7 cma \approx \frac{8 \times 0.3790}{0.6428} \approx 4.7 \text{ cm}

So, the triangle with C=117.7\angle C = 117.7^\circ has:

  • A=22.3\angle A = 22.3^\circ
  • a4.7 cma \approx 4.7 \text{ cm}

Summary of Solutions

Case 1:

  • A=77.7\angle A = 77.7^\circ
  • B=40\angle B = 40^\circ
  • C=62.3\angle C = 62.3^\circ
  • a12.2 cma \approx 12.2 \text{ cm}
  • b=8 cmb = 8 \text{ cm}
  • c=11 cmc = 11 \text{ cm}

Case 2:

  • A=22.3\angle A = 22.3^\circ
  • B=40\angle B = 40^\circ
  • C=117.7\angle C = 117.7^\circ
  • a4.7 cma \approx 4.7 \text{ cm}
  • b=8 cmb = 8 \text{ cm}
  • c=11 cmc = 11 \text{ cm}

Would you like more details or have any other questions? Here are some related questions you might find interesting:

  1. How do we know when there can be two possible solutions for a triangle?
  2. Can a triangle have more than two possible solutions?
  3. What happens if sinC>1\sin C > 1 when using the Law of Sines?
  4. How do you apply the Law of Cosines in a similar problem?
  5. How does the ambiguous case arise in the Law of Sines?

Tip: When solving triangles, always double-check if multiple solutions are possible, especially in cases where you use the Law of Sines.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Triangle Solving
Law of Sines

Formulas

Law of Sines: (a/sinA) = (b/sinB) = (c/sinC)
Angle Sum Property of a Triangle: A + B + C = 180°

Theorems

Law of Sines
Ambiguous Case of the Law of Sines

Suitable Grade Level

Grades 10-12