Math Problem Statement

Find x₁ and x₂ in the matrix equation: [[-2, 1], [-3, 4]] * [x₁, x₂] + [15, 5] = [30, 30].

Solution

We are given a system of linear equations from a matrix equation. The problem is presented as follows:

(2134)(x1x2)+(155)=(3030)\begin{pmatrix} -2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 15 \\ 5 \end{pmatrix} = \begin{pmatrix} 30 \\ 30 \end{pmatrix}

Step 1: Simplify the equation

We start by isolating the matrix multiplication part:

(2134)(x1x2)=(3030)(155)\begin{pmatrix} -2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 30 \\ 30 \end{pmatrix} - \begin{pmatrix} 15 \\ 5 \end{pmatrix}

This simplifies to:

(2134)(x1x2)=(1525)\begin{pmatrix} -2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 15 \\ 25 \end{pmatrix}

Step 2: Expand the matrix multiplication

Now, perform the matrix multiplication on the left-hand side:

-2x_1 + x_2 &= 15 \\ -3x_1 + 4x_2 &= 25 \end{aligned}$$ ### Step 3: Solve the system of equations We can solve this

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Operations
Systems of Linear Equations

Formulas

Matrix equation: A * X = B
Solving system of equations: ax + by = c

Theorems

Gauss elimination method
Matrix addition and multiplication properties

Suitable Grade Level

Grades 9-12