Math Problem Statement

scale: 1 inch to 8 feet actual area: 256 square feet scale: 1 inch to 4 feet actual area: 128 square feet scale: 1 inch to 7 feet actual area: 147 square feet scale: 1 inch to 5 feet actual area: 225 square feet area of scale drawing scale and actual area scale drawing area: 4 square inches arrowRight scale drawing area: 8 square inches arrowRight scale drawing area: 9 square inches arrowRight scale drawing area: 3 square inches arrowRight

Solution

To find the actual area of a scale drawing, we can use the relationship between the scale factor and the actual area. Here, we have the scale, actual area, and the area of the scale drawing. We will calculate the scale drawing area given the actual area and the scale, and then verify if the actual area matches the given values.

Scale: 1 inch to 8 feet

Actual area: 256 square feet Scale factor=8feet per inch\text{Scale factor} = 8 \, \text{feet per inch} Scale drawing area=(Actual area(Scale factor)2)\text{Scale drawing area} = \left(\frac{\text{Actual area}}{(\text{Scale factor})^2}\right) Scale drawing area=25682=25664=4square inches\text{Scale drawing area} = \frac{256}{8^2} = \frac{256}{64} = 4 \, \text{square inches}

Scale: 1 inch to 4 feet

Actual area: 128 square feet Scale factor=4feet per inch\text{Scale factor} = 4 \, \text{feet per inch} Scale drawing area=12842=12816=8square inches\text{Scale drawing area} = \frac{128}{4^2} = \frac{128}{16} = 8 \, \text{square inches}

Scale: 1 inch to 7 feet

Actual area: 147 square feet Scale factor=7feet per inch\text{Scale factor} = 7 \, \text{feet per inch} Scale drawing area=14772=14749=3square inches\text{Scale drawing area} = \frac{147}{7^2} = \frac{147}{49} = 3 \, \text{square inches}

Scale: 1 inch to 5 feet

Actual area: 225 square feet Scale factor=5feet per inch\text{Scale factor} = 5 \, \text{feet per inch} Scale drawing area=22552=22525=9square inches\text{Scale drawing area} = \frac{225}{5^2} = \frac{225}{25} = 9 \, \text{square inches}

Therefore, the areas of the scale drawings are:

  1. 4 square inches
  2. 8 square inches
  3. 3 square inches
  4. 9 square inches

Do you want details or have any questions?

Here are 5 questions you can ask next:

  1. How do you determine the dimensions of a scale drawing given its area and scale factor?
  2. How does changing the scale factor affect the area of a scale drawing?
  3. Can you explain how to convert between different units of measurement in scale drawings?
  4. What are some common applications of scale drawings in architecture and engineering?
  5. How do you calculate the dimensions of a scale drawing from the actual dimensions?

Tip: When working with scale drawings, always ensure you square the scale factor when converting between actual areas and scale drawing areas.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Scale Drawings
Proportions

Formulas

Scale factor formula: Scale drawing area = (Actual area) / (Scale factor)^2

Theorems

-

Suitable Grade Level

Grades 6-8