Math Problem Statement

Consider the equation 𝑒𝑑=5𝑒π‘₯π‘₯+3cos(6𝑑) with boundary conditions 𝑒π‘₯(0,𝑑)=0,𝑒(πœ‹,𝑑)=0 and initial conditions 𝑒(π‘₯,0)=0. The solution to this equation has the form 𝑒(π‘₯,𝑑)=βˆ‘π‘›=0βˆžπ‘’π‘›(𝑑)πœ™π‘›(π‘₯) (note index starting at zero) where πœ™π‘›(π‘₯)= cos((n+1/2)x) . To find 𝑒𝑛(𝑑), we first decompose 3cos(6𝑑)=βˆ‘π‘›=0βˆžπ‘π‘›(𝑑)πœ™π‘›(π‘₯) where 𝑐𝑛(𝑑)= 6cos(6t)(-1)^n/(pi(n+1/2)). Then 𝑒𝑛 satisfies the ODE 𝑒′𝑛(𝑑)=π‘Žπ‘›π‘’π‘›(𝑑)+𝑐𝑛(𝑑) where π‘Žπ‘› = -5(n+1/2)^2. It is subject to initial conditions 𝑒𝑛(0)= 0 . We solve this ODE and find the solution has the form 𝑒𝑛(𝑑)=𝐴cos(6𝑑)+𝐡sin(6𝑑)+𝐢exp(π‘Žπ‘›π‘‘), where 𝐴= , 𝐡= , 𝐢

Solution

We start by solving the ordinary differential equation:

unβ€²(t)=anun(t)+cn(t)u_n'(t) = a_n u_n(t) + c_n(t)

where

an=βˆ’5(n+1/2)2,cn(t)=6(βˆ’1)nΟ€(n+1/2)cos⁑(6t).a_n = -5(n+1/2)^2, \quad c_n(t) = \frac{6(-1)^n}{\pi (n+1/2)} \cos(6t).

Since this is a first-order linear ODE, we look for a solution of the form:

un(t)=Acos⁑(6t)+Bsin⁑(6t)+Ceant.u_n(t) = A \cos(6t) + B \sin(6t) + C e^{a_n t}.

Step 1: Find AA and BB

We assume a particular solution of the form:

unpart(t)=Acos⁑(6t)+Bsin⁑(6t).u_n^{\text{part}}(t) = A \cos(6t) + B \sin(6t).

Taking the derivative,

unpartβ€²(t)=βˆ’6Asin⁑(6t)+6Bcos⁑(6t).u_n^{\text{part}'}(t) = -6 A \sin(6t) + 6 B \cos(6t).

Substituting into the ODE,

βˆ’6Asin⁑(6t)+6Bcos⁑(6t)=an(Acos⁑(6t)+Bsin⁑(6t))+cn(t).-6 A \sin(6t) + 6 B \cos(6t) = a_n(A \cos(6t) + B \sin(6t)) + c_n(t).

Expanding,

βˆ’6Asin⁑(6t)+6Bcos⁑(6t)=anAcos⁑(6t)+anBsin⁑(6t)+6(βˆ’1)nΟ€(n+1/2)cos⁑(6t).-6 A \sin(6t) + 6 B \cos(6t) = a_n A \cos(6t) + a_n B \sin(6t) + \frac{6(-1)^n}{\pi (n+1/2)} \cos(6t).

Equating coefficients of cos⁑(6t)\cos(6t) and sin⁑(6t)\sin(6t), we get:

  1. 6B=anA+6(βˆ’1)nΟ€(n+1/2)6B = a_n A + \frac{6(-1)^n}{\pi (n+1/2)}.
  2. βˆ’6A=anB-6A = a_n B.

Solving for AA and BB,

A=βˆ’an6B.A = \frac{-a_n}{6} B.

Substituting this into the first equation:

6B=an(βˆ’an6B)+6(βˆ’1)nΟ€(n+1/2).6B = a_n \left( \frac{-a_n}{6} B \right) + \frac{6(-1)^n}{\pi (n+1/2)}.

6B=βˆ’an26B+6(βˆ’1)nΟ€(n+1/2).6B = \frac{-a_n^2}{6} B + \frac{6(-1)^n}{\pi (n+1/2)}.

Multiplying everything by 6,

36B+an2B=36(βˆ’1)nΟ€(n+1/2).36B + a_n^2 B = \frac{36(-1)^n}{\pi (n+1/2)}.

B(36+an2)=36(βˆ’1)nΟ€(n+1/2).B(36 + a_n^2) = \frac{36(-1)^n}{\pi (n+1/2)}.

B=36(βˆ’1)nΟ€(n+1/2)(36+an2).B = \frac{36(-1)^n}{\pi (n+1/2) (36 + a_n^2)}.

Using an=βˆ’5(n+1/2)2a_n = -5(n+1/2)^2, we get:

an2=25(n+1/2)4.a_n^2 = 25(n+1/2)^4.

B=36(βˆ’1)nΟ€(n+1/2)(36+25(n+1/2)4).B = \frac{36(-1)^n}{\pi (n+1/2) (36 + 25(n+1/2)^4)}.

A=βˆ’an6B=5(n+1/2)26B.A = \frac{-a_n}{6} B = \frac{5(n+1/2)^2}{6} B.

A=30(n+1/2)2(βˆ’1)nΟ€(n+1/2)6(36+25(n+1/2)4).A = \frac{30(n+1/2)^2(-1)^n}{\pi (n+1/2) 6 (36 + 25(n+1/2)^4)}.

A=5(n+1/2)(βˆ’1)nΟ€(36+25(n+1/2)4).A = \frac{5(n+1/2)(-1)^n}{\pi (36 + 25(n+1/2)^4)}.

Step 2: Find CC

The general solution also includes a homogeneous part:

Ceant.C e^{a_n t}.

The initial condition un(0)=0u_n(0) = 0 gives:

Acos⁑(0)+Bsin⁑(0)+Ce0=0.A \cos(0) + B \sin(0) + C e^{0} = 0.

A+C=0.A + C = 0.

C=βˆ’A.C = -A.

Final Answers:

A=5(n+1/2)(βˆ’1)nΟ€(36+25(n+1/2)4).A = \frac{5(n+1/2)(-1)^n}{\pi (36 + 25(n+1/2)^4)}.

B=36(βˆ’1)nΟ€(n+1/2)(36+25(n+1/2)4).B = \frac{36(-1)^n}{\pi (n+1/2) (36 + 25(n+1/2)^4)}.

C=βˆ’A=βˆ’5(n+1/2)(βˆ’1)nΟ€(36+25(n+1/2)4).C = -A = \frac{-5(n+1/2)(-1)^n}{\pi (36 + 25(n+1/2)^4)}.


Do you need more details or a verification step?

Related Questions:

  1. How can we generalize this solution method for different PDEs?
  2. What happens if the boundary conditions are changed?
  3. How do we interpret the role of eigenfunctions in this method?
  4. Can we derive an explicit series solution for u(x,t)u(x,t) using these coefficients?
  5. What physical systems can be modeled by this PDE?

Tip: Always check boundary and initial conditions after solving a differential equation to ensure correctness!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Differential Equations
Fourier Series
Ordinary Differential Equations (ODEs)
Eigenfunctions

Formulas

𝑒𝑑=5𝑒π‘₯π‘₯+3cos(6𝑑)
πœ™π‘›(π‘₯)= cos((n+1/2)x)
𝑐𝑛(𝑑)= 6cos(6t)(-1)^n/(pi(n+1/2))
π‘Žπ‘› = -5(n+1/2)^2
𝑒′𝑛(𝑑)=π‘Žπ‘›π‘’π‘›(𝑑)+𝑐𝑛(𝑑)
𝑒𝑛(𝑑)=𝐴cos(6𝑑)+𝐡sin(6𝑑)+𝐢exp(π‘Žπ‘›π‘‘)

Theorems

Separation of Variables
Method of Eigenfunction Expansion
Solution of First-Order Linear ODEs

Suitable Grade Level

Undergraduate (Applied Mathematics or Physics)