Math Problem Statement

Let's solve the problem:

4𝑒π‘₯π‘₯+𝑒𝑦𝑦+π‘₯=0

inside a rectangle

0<π‘₯<3,0<𝑦<1

with boundary conditions𝑒=0 on left and bottom, π‘’π‘₯=0 on right, and π‘’𝑦=0 on top.

We decompose

𝑒(π‘₯,𝑦)=βˆ‘π‘›=0βˆžπ‘’π‘›(𝑦)πœ™π‘›(π‘₯)

and

π‘₯=βˆ‘π‘›=0βˆžπ‘π‘›πœ™π‘›(π‘₯)

where πœ™π‘›(π‘₯)= sin((n+1/2)pix/3) .

and π‘π‘› =12(2sin((n+1/2)*pi)-pi(cos((n+1/2)pi)(2n+1)))/(pi(2n+1))^2  .

and where π‘’𝑛 satisfies the ODE

𝑒″𝑛(𝑦)+π‘Žπ‘’π‘›(𝑦)+𝑏=0

subject to boundary conditions π‘’𝑛(0)=0,𝑒′𝑛(1)=0;

with π‘Ž =-4((n+1/2)*pi/3)^2  ,  π‘ = 12(2sin((n+1/2)*pi)-pi(cos((n+1/2)pi)(2n+1)))/(pi(2n+1))^2 .

Therefore π‘’𝑛(𝑦) =   .

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Differential Equations
Boundary Value Problems
Fourier Series
Eigenfunction Expansion

Formulas

4u_{xx} + u_{yy} + x = 0
u(x, y) = βˆ‘_{n=0}^{∞} u_n(y) Ο†_n(x)
Ο†_n(x) = sin((n + 1/2)Ο€x / 3)
u_n(y)'' + a u_n(y) + b = 0
c_n = 12(2sin((n+1/2)Ο€) - Ο€cos((n+1/2)Ο€)(2n+1)) / (Ο€(2n+1))^2

Theorems

Separation of Variables
Method of Solution for Linear Differential Equations

Suitable Grade Level

Graduate Level