Math Problem Statement

$$$$ \left\lbrack\left(+5\right)^3\div\left(-5\right)\cdot2+7\cdot\left(13-2\cdot3\right)\right\rbrack\cdot\left\lbrace\left\lbrack\left(-4^{}\right)^3-8^2\cdot\left(-4\right)+5.24\right\rbrack\div10^2\right\rbrace $$$$

Solution

Let's break this expression down step by step:

[ \left[ \left( +5 \right)^3 \div \left( -5 \right) \cdot 2 + 7 \cdot \left( 13 - 2 \cdot 3 \right) \right] \cdot \left{ \left[ \left( -4 \right)^3 - 8^2 \cdot \left( -4 \right) + 5.24 \right] \div 10^2 \right} ]

Step 1: Solve the first bracket []\left[ \cdot \right]

(+5)3=53=125\left( +5 \right)^3 = 5^3 = 125 125÷(5)=25125 \div (-5) = -25 252=50-25 \cdot 2 = -50 Next, calculate 7(1323)7 \cdot \left( 13 - 2 \cdot 3 \right): 23=62 \cdot 3 = 6 136=713 - 6 = 7 77=497 \cdot 7 = 49 Now sum everything in the first bracket: 50+49=1-50 + 49 = -1

Step 2: Solve the second bracket {}\left\{ \cdot \right\}

First, solve [(4)382(4)+5.24]\left[ \left( -4 \right)^3 - 8^2 \cdot \left( -4 \right) + 5.24 \right]: (4)3=64\left( -4 \right)^3 = -64 82=648^2 = 64 64(4)=25664 \cdot (-4) = -256 Now sum up inside the second bracket: 64(256)+5.24=64+256+5.24=197.24-64 - (-256) + 5.24 = -64 + 256 + 5.24 = 197.24 Now divide by 102=10010^2 = 100: 197.24100=1.9724\frac{197.24}{100} = 1.9724

Step 3: Multiply the results of both brackets

(1)1.9724=1.9724(-1) \cdot 1.9724 = -1.9724

Thus, the value of the expression is:

1.9724\boxed{-1.9724}

Would you like any further details or explanations?

Here are 5 related questions to explore:

  1. How does the order of operations affect complex expressions like this?
  2. What are some common mistakes when dealing with negative numbers in exponents?
  3. How do powers of 10 affect division in large expressions?
  4. What role does distribution play in simplifying nested brackets?
  5. How can we simplify expressions involving both multiplication and division with negative numbers?

Tip: Always handle powers and parentheses first to avoid calculation errors when evaluating complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Order of Operations
Exponents
Division
Multiplication
Addition
Subtraction

Formulas

PEMDAS (Parentheses, Exponents, Multiplication/Division, Addition/Subtraction)
Exponentiation (a^b)

Theorems

Order of Operations
Distributive Property

Suitable Grade Level

Grades 9-12