Math Problem Statement

kerjakan

Tentukan nilai x dan y pada setiap persamaan matriks berikut.

Solution

The problem asks you to determine the values of xx and yy from matrix equations. Let's go through each part one by one.

Part a:

(x5)=(72y)+(111)\begin{pmatrix} x \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 2y \end{pmatrix} + \begin{pmatrix} -1 \\ -11 \end{pmatrix}

First, let's simplify the right-hand side: (72y)+(111)=(712y11)=(62y11)\begin{pmatrix} 7 \\ 2y \end{pmatrix} + \begin{pmatrix} -1 \\ -11 \end{pmatrix} = \begin{pmatrix} 7 - 1 \\ 2y - 11 \end{pmatrix} = \begin{pmatrix} 6 \\ 2y - 11 \end{pmatrix}

Now we have: (x5)=(62y11)\begin{pmatrix} x \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 2y - 11 \end{pmatrix}

By comparing elements of the vectors:

  1. x=6x = 6
  2. 5=2y115 = 2y - 11

Solving for yy in the second equation: 5+11=2y    16=2y    y=85 + 11 = 2y \implies 16 = 2y \implies y = 8

Thus, for part (a), the solution is: x=6,y=8x = 6, \quad y = 8


Part b:

(92y)+(6y)=(3y)\begin{pmatrix} 9 \\ 2y \end{pmatrix} + \begin{pmatrix} -6 \\ -y \end{pmatrix} = \begin{pmatrix} 3 \\ y \end{pmatrix}

First, simplify the left-hand side: (92y)+(6y)=(962yy)=(3y)\begin{pmatrix} 9 \\ 2y \end{pmatrix} + \begin{pmatrix} -6 \\ -y \end{pmatrix} = \begin{pmatrix} 9 - 6 \\ 2y - y \end{pmatrix} = \begin{pmatrix} 3 \\ y \end{pmatrix}

Now we have: (3y)=(3y)\begin{pmatrix} 3 \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ y \end{pmatrix}

This is an identity, meaning that part (b) holds for any value of yy. Therefore, yy is undetermined, and any yy satisfies the equation.


Part c:

(2x2y)+(3y3x)=(114)\begin{pmatrix} 2x \\ 2y \end{pmatrix} + \begin{pmatrix} 3y \\ 3x \end{pmatrix} = \begin{pmatrix} 11 \\ 4 \end{pmatrix}

First, simplify the left-hand side: (2x2y)+(3y3x)=(2x+3y2y+3x)\begin{pmatrix} 2x \\ 2y \end{pmatrix} + \begin{pmatrix} 3y \\ 3x \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 2y + 3x \end{pmatrix}

Now we have the equation: (2x+3y2y+3x)=(114)\begin{pmatrix} 2x + 3y \\ 2y + 3x \end{pmatrix} = \begin{pmatrix} 11 \\ 4 \end{pmatrix}

By comparing elements of the vectors:

  1. 2x+3y=112x + 3y = 11
  2. 2y+3x=42y + 3x = 4

Now we have a system of two equations: 2x+3y=11(Equation 1)2x + 3y = 11 \quad \text{(Equation 1)} 2y+3x=4(Equation 2)2y + 3x = 4 \quad \text{(Equation 2)}

Let me solve this system.

I'll subtract Equation 1 from Equation 2: (2y+3x)(2x+3y)=411(2y + 3x) - (2x + 3y) = 4 - 11 2y+3x2x3y=72y + 3x - 2x - 3y = -7 (xy)=7(x - y) = -7 Thus: x=y7(Equation 3)x = y - 7 \quad \text{(Equation 3)}

Now substitute x=y7x = y - 7 into Equation 1: 2(y7)+3y=112(y - 7) + 3y = 11 2y14+3y=112y - 14 + 3y = 11 5y=255y = 25 y=5y = 5

Substitute y=5y = 5 into Equation 3: x=57=2x = 5 - 7 = -2

Thus, for part (c), the solution is: x=2,y=5x = -2, \quad y = 5


Summary of Solutions:

  • Part a: x=6,y=8x = 6, y = 8
  • Part b: yy is undetermined.
  • Part c: x=2,y=5x = -2, y = 5

Would you like more detailed explanations or have any questions?

Here are 5 related questions to further practice:

  1. How would you solve a system of linear equations using matrix inversion?
  2. Can you express matrix addition geometrically or graphically?
  3. What is the determinant of a matrix, and how does it relate to the solutions of linear systems?
  4. How do you determine if a system of equations has one solution, no solution, or infinite solutions?
  5. What is the method of Gaussian elimination, and how does it help solve matrix equations?

Tip: When solving systems of equations, always look for symmetries or patterns that can simplify calculations before diving into complex algebraic manipulations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Equations
Linear Algebra
System of Equations

Formulas

Matrix addition: \(A + B = C\) where elements of A and B are added element-wise.
Solving systems of linear equations using substitution.

Theorems

Basic Matrix Operations
System of Linear Equations

Suitable Grade Level

Grades 10-12