Math Problem Statement

Jika \( \begin{bmatrix} 7 & 2 \\ -4 & 23 \end{bmatrix} = x \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix} + y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), nilai x dan y berturut-turut adalah...

Solution

The question asks us to solve for xx and yy given the matrix equation:

[72423]=x[3125]+y[1001]\begin{bmatrix} 7 & 2 \\ -4 & 23 \end{bmatrix} = x \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix} + y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

This can be broken down into a system of linear equations by comparing the entries of the resulting matrices on both sides.

Step 1: Expand the Right Side

  1. Multiply xx by each entry of the matrix [3125]\begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}. x[3125]=[3xx2x5x]x \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix} = \begin{bmatrix} 3x & -x \\ 2x & -5x \end{bmatrix}

  2. Multiply yy by each entry of the identity matrix [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. y[1001]=[y00y]y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} y & 0 \\ 0 & y \end{bmatrix}

  3. Add the matrices: [3x+yx2x5x+y]\begin{bmatrix} 3x + y & -x \\ 2x & -5x + y \end{bmatrix}

Step 2: Set Up Equations by Comparing Entries

Now, equate each element in the resulting matrix to the corresponding element in [72423]\begin{bmatrix} 7 & 2 \\ -4 & 23 \end{bmatrix}:

  1. Top-left element: 3x+y=73x + y = 7
  2. Top-right element: x=2-x = 2
  3. Bottom-left element: 2x=42x = -4
  4. Bottom-right element: 5x+y=23-5x + y = 23

Step 3: Solve for xx and yy

From equation 2x=42x = -4: x=2x = -2

Substitute x=2x = -2 into the other equations:

  1. Substitute x=2x = -2 into x=2-x = 2, which holds true.

  2. Substitute x=2x = -2 into 3x+y=73x + y = 7: 3(2)+y=76+y=7y=133(-2) + y = 7 \Rightarrow -6 + y = 7 \Rightarrow y = 13

  3. Substitute x=2x = -2 into 5x+y=23-5x + y = 23: 5(2)+y=2310+y=23y=13-5(-2) + y = 23 \Rightarrow 10 + y = 23 \Rightarrow y = 13

Solution

The values of xx and yy are: x=2andy=13x = -2 \quad \text{and} \quad y = 13

Answer

The correct answer is B. -2 dan 13.

Would you like further details on any step?


Here are some related questions to consider:

  1. What are the basic properties of matrix addition and scalar multiplication?
  2. How can we verify solutions in matrix equations?
  3. What are some common techniques for solving systems of linear equations?
  4. How does matrix multiplication differ from scalar multiplication?
  5. Can matrix equations have multiple solutions or be inconsistent?

Tip: Always check each substituted value in all initial equations to verify your solution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Equations
Scalar Multiplication
System of Linear Equations

Formulas

Matrix multiplication formula: A \( \times \) B
Setting up equations by equating matrix entries

Theorems

Matrix equality theorem

Suitable Grade Level

Grade 9