Math Problem Statement

2A - B = {{-5,3},{4,7}} while A - 2B = {{-5,4},{3,2}} Find det(Power[AB,-1])

Solution

Let's start by solving the problem step by step.

Given:

2AB=(5347),A2B=(5432)2A - B = \begin{pmatrix} -5 & 3 \\ 4 & 7 \end{pmatrix}, \quad A - 2B = \begin{pmatrix} -5 & 4 \\ 3 & 2 \end{pmatrix}

We need to find det((AB)1)\det\left((AB)^{-1}\right).

Step 1: Express AA and BB in terms of matrices

First, let's express AA and BB in terms of these equations.

We have two equations:

2AB=(5347)2A - B = \begin{pmatrix} -5 & 3 \\ 4 & 7 \end{pmatrix}

A2B=(5432)A - 2B = \begin{pmatrix} -5 & 4 \\ 3 & 2 \end{pmatrix}

Step 2: Solve the system for AA and BB

Let's solve for BB from the first equation:

B=2A(5347)=2A+(5347)B = 2A - \begin{pmatrix} -5 & 3 \\ 4 & 7 \end{pmatrix} = 2A + \begin{pmatrix} 5 & -3 \\ -4 & -7 \end{pmatrix}

Substitute BB into the second equation:

[ A - 2\left(2A + \begin{pmatrix} 5 &

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Determinants
Matrix Inverse

Formulas

Matrix multiplication
Determinant of a 2x2 matrix
Inverse of a 2x2 matrix

Theorems

-

Suitable Grade Level

Advanced High School