Math Problem Statement

Solution

Let's carefully re-evaluate the solution, step by step, to identify any potential errors.

Step 1: Finding the Inverse of Matrix AA

Given: A=[5287]A = \begin{bmatrix} -5 & 2 \\ -8 & -7 \end{bmatrix}

First, compute the determinant of AA: Det(A)=(5×7)(2×8)=3516=19\text{Det}(A) = (-5 \times -7) - (2 \times -8) = 35 - 16 = 19

Next, compute the inverse of AA: A1=1Det(A)[dbca]=119[7285]=[719219819519]A^{-1} = \frac{1}{\text{Det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{19} \begin{bmatrix} -7 & -2 \\ 8 & -5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

So, the correct inverse of AA should be: A1=[719219819519]A^{-1} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

Step 2: Solving Ax=bA \mathbf{x} = \mathbf{b}

Given: b=[44]\mathbf{b} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}

We find x\mathbf{x} using: x=A1b=[719219819519][44]\mathbf{x} = A^{-1} \mathbf{b} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix} \begin{bmatrix} -4 \\ 4 \end{bmatrix}

Calculate each element of x\mathbf{x}:

  1. First element x1x_1: x1=(719×4)+(219×4)=2819819=2019x_1 = \left(-\frac{7}{19} \times -4\right) + \left(-\frac{2}{19} \times 4\right) = \frac{28}{19} - \frac{8}{19} = \frac{20}{19}

  2. Second element x2x_2: x2=(819×4)+(519×4)=32192019=5219x_2 = \left(\frac{8}{19} \times -4\right) + \left(-\frac{5}{19} \times 4\right) = -\frac{32}{19} - \frac{20}{19} = -\frac{52}{19}

Thus, the solution x\mathbf{x} is: x=[20195219]\mathbf{x} = \begin{bmatrix} \frac{20}{19} \\ -\frac{52}{19} \end{bmatrix}

In simplified terms: x=[20195219]\mathbf{x} = \begin{bmatrix} \frac{20}{19} \\ -\frac{52}{19} \end{bmatrix}

Summary

  1. The correct inverse of AA is: A1=[719219819519]A^{-1} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

  2. The correct solution for x\mathbf{x} is: x=[20195219]\mathbf{x} = \begin{bmatrix} \frac{20}{19} \\ -\frac{52}{19} \end{bmatrix}

Would you like more details or have any questions?

Here are 5 questions you might want to ask:

  1. How can I verify the correctness of a matrix inverse?
  2. Can you explain the determinant calculation in more detail?
  3. How does matrix multiplication work?
  4. What are some common mistakes when solving matrix equations?
  5. Can you show me how to solve another matrix equation?

Tip: Always use exact fractions rather than decimal approximations when solving matrix equations to avoid precision errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Linear Algebra

Formulas

Inverse of a 2x2 Matrix

Theorems

-

Suitable Grade Level

Advanced High School