Math Problem Statement

Solution

Let's carefully review the process and check for any potential errors. We already calculated the inverse and the solution to the matrix equation, but there seems to be an error.

Given: A=[5287]A = \begin{bmatrix} -5 & 2 \\ -8 & -7 \end{bmatrix}

Step 1: Calculating the Determinant of AA

Det(A)=(5×7)(2×8)=3516=19\text{Det}(A) = (-5 \times -7) - (2 \times -8) = 35 - 16 = 19

Step 2: Finding the Inverse of AA

A1=119[7285]=[719219819519]A^{-1} = \frac{1}{19} \begin{bmatrix} -7 & -2 \\ 8 & -5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

Step 3: Solving Ax=bA \mathbf{x} = \mathbf{b}

Given: b=[44]\mathbf{b} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}

We find x\mathbf{x} using: x=A1b=[719219819519][44]\mathbf{x} = A^{-1} \mathbf{b} = \begin{bmatrix} -\frac{7}{19} & -\frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix} \begin{bmatrix} -4 \\ 4 \end{bmatrix}

Calculate each element of x\mathbf{x}:

  1. First element x1x_1: x1=(719×4)+(219×4)=2819819=2019x_1 = \left(-\frac{7}{19} \times -4\right) + \left(-\frac{2}{19} \times 4\right) = \frac{28}{19} - \frac{8}{19} = \frac{20}{19}

  2. Second element x2x_2: x2=(819×4)+(519×4)=32192019=5219x_2 = \left(\frac{8}{19} \times -4\right) + \left(-\frac{5}{19} \times 4\right) = -\frac{32}{19} - \frac{20}{19} = -\frac{52}{19}

Rechecking the Inverse Calculation:

A1=119[7285]=[719219819519]A^{-1} = \frac{1}{19} \begin{bmatrix} -7 & 2 \\ 8 & -5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{19} & \frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

There seems to have been a mistake in the signs in the inverse calculation provided in your entry. The correct inverse should be: A1=[719219819519]A^{-1} = \begin{bmatrix} -\frac{7}{19} & \frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

Correct Solutions:

  1. Inverse matrix: A1=[719219819519]A^{-1} = \begin{bmatrix} -\frac{7}{19} & \frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix}

  2. Solution to the matrix equation: x=[20195219]\mathbf{x} = \begin{bmatrix} \frac{20}{19} \\ -\frac{52}{19} \end{bmatrix}

So, the corrected values should be:

A1=[719219819519]A^{-1} = \begin{bmatrix} -\frac{7}{19} & \frac{2}{19} \\ \frac{8}{19} & -\frac{5}{19} \end{bmatrix} x=[20195219]\mathbf{x} = \begin{bmatrix} \frac{20}{19} \\ -\frac{52}{19} \end{bmatrix}

Would you like more details or have any questions?

Here are 5 questions you might want to ask:

  1. How can I verify the correctness of a matrix inverse?
  2. Can you explain the determinant calculation in more detail?
  3. How does matrix multiplication work?
  4. What are some common mistakes when solving matrix equations?
  5. Can you show me how to solve another matrix equation?

Tip: Always double-check the signs and elements when finding the inverse of a matrix, as small sign errors can lead to incorrect results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Inverse Matrices
Matrix Equations

Formulas

Matrix Inverse Formula
Matrix Multiplication

Theorems

Matrix Inverse Theorem

Suitable Grade Level

Advanced High School