Math Problem Statement
Berikut adalah jawaban untuk setiap soal:
-
Soal 1: Tentukan nilai dari ( \log_2 16 ).
[ \log_2 16 = \log_2 (2^4) = 4 ]
-
Soal 2: Jika ( \log_3(x) = 4 ), berapa nilai ( x )?
[ \log_3(x) = 4 \implies x = 3^4 = 81 ]
-
Soal 3: Sederhanakan ( \log_5(125) - \log_5(25) ).
[ \log_5(125) = \log_5 (5^3) = 3 ] [ \log_5(25) = \log_5 (5^2) = 2 ] [ \log_5(125) - \log_5(25) = 3 - 2 = 1 ]
-
Soal 4: Jika ( \log_7(2x + 1) = 2 ), tentukan nilai ( x ).
[ \log_7(2x + 1) = 2 \implies 2x + 1 = 7^2 = 49 ] [ 2x + 1 = 49 \implies 2x = 48 \implies x = 24 ]
-
Soal 5: Tentukan nilai dari ( \log_4 64 ).
[ 64 = 4^3 \implies \log_4 64 = \log_4 (4^3) = 3 ]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Logarithms
Exponential Functions
Formulas
\( \log_b(a^n) = n \)
\( b^{\log_b(x)} = x \)
Subtraction property of logarithms: \( \log_b(x) - \log_b(y) = \log_b\left(\frac{x}{y}\right) \)
Theorems
Logarithmic identities
Exponential-logarithmic relationship
Suitable Grade Level
Grades 9-11