Math Problem Statement

Berikut adalah jawaban untuk setiap soal:

  1. Soal 1: Tentukan nilai dari ( \log_2 16 ).

    [ \log_2 16 = \log_2 (2^4) = 4 ]

  2. Soal 2: Jika ( \log_3(x) = 4 ), berapa nilai ( x )?

    [ \log_3(x) = 4 \implies x = 3^4 = 81 ]

  3. Soal 3: Sederhanakan ( \log_5(125) - \log_5(25) ).

    [ \log_5(125) = \log_5 (5^3) = 3 ] [ \log_5(25) = \log_5 (5^2) = 2 ] [ \log_5(125) - \log_5(25) = 3 - 2 = 1 ]

  4. Soal 4: Jika ( \log_7(2x + 1) = 2 ), tentukan nilai ( x ).

    [ \log_7(2x + 1) = 2 \implies 2x + 1 = 7^2 = 49 ] [ 2x + 1 = 49 \implies 2x = 48 \implies x = 24 ]

  5. Soal 5: Tentukan nilai dari ( \log_4 64 ).

    [ 64 = 4^3 \implies \log_4 64 = \log_4 (4^3) = 3 ]

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponential Functions

Formulas

\( \log_b(a^n) = n \)
\( b^{\log_b(x)} = x \)
Subtraction property of logarithms: \( \log_b(x) - \log_b(y) = \log_b\left(\frac{x}{y}\right) \)

Theorems

Logarithmic identities
Exponential-logarithmic relationship

Suitable Grade Level

Grades 9-11