Math Problem Statement

Найти решения системы уравнений а) по формулам Крамера; б) с помощью обратной матрицы (матричным методом).

Найти решения системы уравнений а) по формулам Крамера; б) с помощью обратной матрицы (матричным методом).

Solution

Coefficients of the system of equations

A = np.array([ [2, -1, 3], [1, 3, -1], [1, -2, 2] ])

Constants on the right-hand side

B = np.array([-4, 11, -7])

Solve using Cramer's rule

det_A = np.linalg.det(A)

if det_A != 0: x1_numer = np.linalg.det(np.column_stack((B, A[:, 1], A[:, 2]))) x2_numer = np.linalg.det(np.column_stack((A[:, 0], B, A[:, 2]))) x3_numer = np.linalg.det(np.column_stack((A[:, 0], A[:, 1], B)))

x1_cramer = x1_numer / det_A
x2_cramer = x2_numer / det_A
x3_cramer = x3_numer / det_A

else: x1_cramer = x2_cramer = x3_cramer = None

Solve using the inverse matrix method

try: A_inv = np.linalg.inv(A) solution_matrix_method = np.dot(A_inv, B) except np.linalg.LinAlgError: solution_matrix_method = None

xHere are the solutions to the system of equations:

a) Using Cramer's Rule:

  • x1=1x_1 = 1
  • x2=3x_2 = 3
  • x3=1x_3 = -1

b) Using the Matrix Method (Inverse Matrix):

  • x1=1x_1 = 1
  • x2=3x_2 = 3
  • x3=1x_3 = -1

Both methods give the same solution.

Would you like further clarification on the methods used or detailed step-by-step explanations?

Here are 5 related questions for further exploration:

  1. How is Cramer's Rule derived from determinants?
  2. What are the conditions for using the inverse matrix method?
  3. How can we check if a system of equations has no solution?
  4. What is the computational complexity difference between these two methods?
  5. How can these methods be extended to larger systems of equations?

Tip: Always check the determinant of the coefficient matrix to ensure the system has a unique solution before applying Cramer’s Rule or the matrix method!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Systems of Linear Equations

Formulas

Cramer's Rule
Inverse Matrix Method

Theorems

Determinant Properties
Matrix Inversion Theorem

Suitable Grade Level

Grades 10-12 or Undergraduate