Math Problem Statement
X÷2 + x+2÷3 = (x + 1) + 5
Solution
Let's solve the equation step by step:
The given equation is:
Step 1: Simplify the right-hand side
The right-hand side simplifies as follows:
So, the equation becomes:
Step 2: Eliminate the fractions by finding a common denominator
The least common denominator (LCD) between 2 and 3 is 6. Multiply the entire equation by 6 to eliminate the fractions:
This simplifies to:
Step 3: Expand both sides
Expand both sides of the equation:
Step 4: Simplify the equation
Now, combine like terms:
Move all the terms involving to one side, and constant terms to the other side:
This simplifies to:
Step 5: Factor out
Factor on the left-hand side:
This simplifies to:
Step 6: Solve for
To solve for , multiply both sides by -1:
Final Answer:
The solution to the equation is:
Do you want further details or have any questions about this solution?
Here are some related questions:
- What is the difference between linear and quadratic equations?
- How do you solve equations with variables on both sides?
- How can you solve equations involving fractions?
- What is the least common denominator, and how is it used in solving equations?
- How do you check if your solution to an equation is correct?
Tip: Always simplify both sides of an equation before solving—it makes the process much easier!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Linear Equations
Fractional Equations
Formulas
Finding a common denominator to combine fractions
Theorems
Basic properties of equality and operations with fractions
Suitable Grade Level
Grades 8-10
Related Recommendation
Solving Linear Equations with Fractions: (2x - 1)/3 = (2x - 8)/2 + 1
Solve the Linear Equation x/2 - (x-2)/3 = (x+1) - 5
Solve the Linear Equation with Fractions: x+1/2 - 3 = 1+x/3
Solving Linear Equation with Fractions: 2x + 1/3 - 2x + 5/5 = 2 + x - 1/6
Solve Linear Equation Involving Fractions: 5/3 (2X - 6) + 18 = 2/3 (X + 3) - 4