Math Problem Statement

A. Calculate the following. i. limπ‘₯β†’βˆ’4 ( π‘₯ 2+π‘₯βˆ’12 π‘₯ 2βˆ’16 ) (3 marks) ii. limπ‘₯β†’βˆ’2 ( π‘₯ 3+2π‘₯ 2βˆ’π‘₯βˆ’2 π‘₯ 2βˆ’4 ) (3 marks) iii.limπ‘₯β†’4 √π‘₯ βˆ’2 π‘₯βˆ’4 (5 marks) iv. limπ‘₯β†’βˆž ( 5π‘₯+2 7π‘₯βˆ’π‘₯ 2 )

Solution

Let's evaluate each limit step by step.

i. lim⁑xβ†’βˆ’4x2+xβˆ’12x2βˆ’16\lim_{x \to -4} \frac{x^2 + x - 12}{x^2 - 16}

  1. Factorize both the numerator and the denominator: x2+xβˆ’12=(xβˆ’3)(x+4)x^2 + x - 12 = (x - 3)(x + 4) x2βˆ’16=(xβˆ’4)(x+4)x^2 - 16 = (x - 4)(x + 4) So, the expression becomes: lim⁑xβ†’βˆ’4(xβˆ’3)(x+4)(xβˆ’4)(x+4)\lim_{x \to -4} \frac{(x - 3)(x + 4)}{(x - 4)(x + 4)}

  2. Simplify: Cancel out (x+4)(x + 4) from both numerator and denominator: lim⁑xβ†’βˆ’4xβˆ’3xβˆ’4\lim_{x \to -4} \frac{x - 3}{x - 4}

  3. Substitute x=βˆ’4x = -4: βˆ’4βˆ’3βˆ’4βˆ’4=βˆ’7βˆ’8=78\frac{-4 - 3}{-4 - 4} = \frac{-7}{-8} = \frac{7}{8}

So, lim⁑xβ†’βˆ’4x2+xβˆ’12x2βˆ’16=78.\lim_{x \to -4} \frac{x^2 + x - 12}{x^2 - 16} = \frac{7}{8}.

ii. lim⁑xβ†’βˆ’2x3+2x2βˆ’xβˆ’2x2βˆ’4\lim_{x \to -2} \frac{x^3 + 2x^2 - x - 2}{x^2 - 4}

  1. Factorize the denominator: x2βˆ’4=(xβˆ’2)(x+2)x^2 - 4 = (x - 2)(x + 2)

  2. Factorize the numerator: Using synthetic division or factoring techniques, we find: x3+2x2βˆ’xβˆ’2=(x+2)(x2+xβˆ’1)x^3 + 2x^2 - x - 2 = (x + 2)(x^2 + x - 1)

  3. Simplify: lim⁑xβ†’βˆ’2(x+2)(x2+xβˆ’1)(xβˆ’2)(x+2)\lim_{x \to -2} \frac{(x + 2)(x^2 + x - 1)}{(x - 2)(x + 2)} Cancel (x+2)(x + 2) from both numerator and denominator: lim⁑xβ†’βˆ’2x2+xβˆ’1xβˆ’2\lim_{x \to -2} \frac{x^2 + x - 1}{x - 2}

  4. Substitute x=βˆ’2x = -2: (βˆ’2)2+(βˆ’2)βˆ’1βˆ’2βˆ’2=4βˆ’2βˆ’1βˆ’4=1βˆ’4=βˆ’14\frac{(-2)^2 + (-2) - 1}{-2 - 2} = \frac{4 - 2 - 1}{-4} = \frac{1}{-4} = -\frac{1}{4}

So, lim⁑xβ†’βˆ’2x3+2x2βˆ’xβˆ’2x2βˆ’4=βˆ’14.\lim_{x \to -2} \frac{x^3 + 2x^2 - x - 2}{x^2 - 4} = -\frac{1}{4}.

iii. lim⁑xβ†’4xβˆ’2xβˆ’4\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}

This is an indeterminate form 00\frac{0}{0}, so we apply L'Hopital's Rule (differentiating numerator and denominator):

  1. Differentiate numerator and denominator:

    • Derivative of the numerator: ddx(xβˆ’2)=12x\frac{d}{dx} (\sqrt{x} - 2) = \frac{1}{2\sqrt{x}}
    • Derivative of the denominator: ddx(xβˆ’4)=1\frac{d}{dx} (x - 4) = 1
  2. Apply L'Hopital's Rule: lim⁑xβ†’412x1=124=12Γ—2=14\lim_{x \to 4} \frac{\frac{1}{2\sqrt{x}}}{1} = \frac{1}{2\sqrt{4}} = \frac{1}{2 \times 2} = \frac{1}{4}

So, lim⁑xβ†’4xβˆ’2xβˆ’4=14.\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{1}{4}.

iv. lim⁑xβ†’βˆž5x+27xβˆ’x2\lim_{x \to \infty} \frac{5x + 2}{7x - x^2}

  1. Divide both the numerator and the denominator by x2x^2: lim⁑xβ†’βˆž5xx2+2x27xx2βˆ’x2x2=lim⁑xβ†’βˆž5x+2x27xβˆ’1\lim_{x \to \infty} \frac{\frac{5x}{x^2} + \frac{2}{x^2}}{\frac{7x}{x^2} - \frac{x^2}{x^2}} = \lim_{x \to \infty} \frac{\frac{5}{x} + \frac{2}{x^2}}{\frac{7}{x} - 1}

  2. As xβ†’βˆžx \to \infty, terms with 1x\frac{1}{x} and 1x2\frac{1}{x^2} vanish: lim⁑xβ†’βˆž0+00βˆ’1=0βˆ’1=0\lim_{x \to \infty} \frac{0 + 0}{0 - 1} = \frac{0}{-1} = 0

So, lim⁑xβ†’βˆž5x+27xβˆ’x2=0.\lim_{x \to \infty} \frac{5x + 2}{7x - x^2} = 0.

Final Answers:

i. 78\frac{7}{8}

ii. βˆ’14-\frac{1}{4}

iii. 14\frac{1}{4}

iv. 00


Do you need further details or explanations on any of these problems?

Here are 5 related questions for you:

  1. What is L'Hopital's Rule and when is it applicable?
  2. How do you factor cubic polynomials?
  3. How can limits be used to find horizontal asymptotes of functions?
  4. What are indeterminate forms, and how can they be resolved?
  5. How do you recognize the need to apply L'Hopital's Rule in a limit problem?

Tip: Always check if a limit problem results in an indeterminate form before proceeding with L'Hopital’s Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Factoring Polynomials
L'Hopital's Rule
Indeterminate Forms
Asymptotic Behavior

Formulas

Factorization: (x^2 - 16) = (x - 4)(x + 4)
L'Hopital's Rule: limπ‘₯→𝑐 f(x)/g(x) = limπ‘₯→𝑐 f'(x)/g'(x) (if indeterminate)
Polynomial Division

Theorems

L'Hopital's Rule
Factorization Theorem for Quadratic and Cubic Polynomials

Suitable Grade Level

Undergraduate Calculus or Advanced High School (AP Calculus)