Math Problem Statement

1. Найдите указанные пределы, не пользуясь правилом Лопиталя: a) lim 3x^3 + 4x / 8x^3 - 4x^2 + 5 as x → ∞; b) lim x^2 - 4x + 3 / x^2 - 1 as x → 1; c) lim √(x - √(x^2 + 7x)) as x → ∞; d) lim √(1 - cos(5x)) / 2x as x → 0; e) lim (2x - 1) / (2x + 2)^(3x) as x → ∞. 2. Задана функция y = f(x). Найти точки разрыва функции и определить их характер разрыва, если они существуют.

Solution

This exercise involves limits and identifying points of discontinuity for a piecewise function. I'll break it down into two parts.

Part 1: Finding the limits

The first set of problems asks to compute limits without using L'Hopital's Rule.

a) limx3x3+4x8x34x2+5\lim_{x \to \infty} \frac{3x^3 + 4x}{8x^3 - 4x^2 + 5}

  • As xx \to \infty, the terms with the highest degree in xx will dominate both the numerator and denominator.
  • The leading term in the numerator is 3x33x^3 and in the denominator, it's 8x38x^3.
  • So, limx3x3+4x8x34x2+5=38\lim_{x \to \infty} \frac{3x^3 + 4x}{8x^3 - 4x^2 + 5} = \frac{3}{8}.

b) limx1x24x+3x21\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 1}

  • First, factor the numerator and denominator: Numerator: x24x+3=(x1)(x3)\text{Numerator: } x^2 - 4x + 3 = (x - 1)(x - 3) Denominator: x21=(x1)(x+1)\text{Denominator: } x^2 - 1 = (x - 1)(x + 1)
  • The factor (x1)(x - 1) cancels out: limx1(x1)(x3)(x1)(x+1)=limx1x3x+1\lim_{x \to 1} \frac{(x - 1)(x - 3)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x - 3}{x + 1}
  • Now substitute x=1x = 1: 131+1=22=1.\frac{1 - 3}{1 + 1} = \frac{-2}{2} = -1.

c) limxxx2+7x\lim_{x \to \infty} \sqrt{x - \sqrt{x^2 + 7x}}

  • To simplify, multiply by the conjugate: xx2+7xx+x2+7xx+x2+7x\sqrt{x - \sqrt{x^2 + 7x}} \cdot \frac{\sqrt{x + \sqrt{x^2 + 7x}}}{\sqrt{x + \sqrt{x^2 + 7x}}}
  • After simplification, the limit tends to 72-\frac{7}{2} as xx \to \infty.

d) limx01cos(5x)2x\lim_{x \to 0} \frac{\sqrt{1 - \cos(5x)}}{2x}

  • Use a small angle approximation: cos(5x)1(5x)22\cos(5x) \approx 1 - \frac{(5x)^2}{2} as x0x \to 0.
  • The expression becomes: 1(125x22)2x=25x222x=5x22x=522.\frac{\sqrt{1 - \left(1 - \frac{25x^2}{2}\right)}}{2x} = \frac{\sqrt{\frac{25x^2}{2}}}{2x} = \frac{\frac{5x}{\sqrt{2}}}{2x} = \frac{5}{2\sqrt{2}}.

e) limx(2x12x+2)3x\lim_{x \to \infty} \left( \frac{2x - 1}{2x + 2} \right)^{3x}

  • Simplify the fraction: 2x12x+2=132x+2\frac{2x - 1}{2x + 2} = 1 - \frac{3}{2x + 2}
  • This approaches 1 as xx \to \infty, so the overall expression approaches 11^{\infty}, which tends to e3e^{-3}.

Part 2: Identifying points of discontinuity for the piecewise function

The function is given as:

\begin{cases} x^2 & \text{if } x \leq 0, \\ (x - 1)^2 & \text{if } 0 < x \leq 2, \\ 5 - x & \text{if } x > 2. \end{cases}$$ To find points of discontinuity, we need to check the behavior of the function at the boundaries of each piece of the domain: at $$x = 0$$ and at $$x = 2$$. - **At $$x = 0$$**: The left-hand limit ($$\lim_{x \to 0^-} f(x) = 0$$) and the right-hand limit ($$\lim_{x \to 0^+} f(x) = 1$$) do not match. Hence, $$x = 0$$ is a **jump discontinuity**. - **At $$x = 2$$**: The left-hand limit ($$\lim_{x \to 2^-} f(x) = 1$$) and the right-hand limit ($$\lim_{x \to 2^+} f(x) = 3$$) do not match. Hence, $$x = 2$$ is also a **jump discontinuity**. ### Conclusion: - The limits for parts a), b), c), d), and e) are calculated. - The points of discontinuity for the function are at $$x = 0$$ and $$x = 2$$, both of which are jump discontinuities. Would you like more details on any specific part? Or perhaps have any other questions? Here are some follow-up questions: 1. How do you compute limits for functions that involve indeterminate forms? 2. Can you explain how to handle rational functions while computing limits? 3. How do small angle approximations help in limit problems? 4. What is the difference between a jump discontinuity and other types of discontinuities? 5. How would you approach a limit involving trigonometric functions? **Tip:** When working with limits, always simplify the expression first before directly substituting values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Piecewise Functions
Discontinuities
Algebraic Functions
Trigonometric Functions

Formulas

lim (f(x)) as x → a
Piecewise Function Definition
Conjugate Multiplication for Limits

Theorems

L'Hopital's Rule (not used here)
Limit Theorems
Small Angle Approximations

Suitable Grade Level

Grades 11-12 (Advanced Mathematics)