Math Problem Statement

Kerjakan step by step nomor 11-14

Kerjakan step by step nomor 11-14

Solution

Let's solve these integrals step by step for questions 11 to 14:


11. 12x5dx\int \frac{1}{2}x^5 \, dx

Solution:

  1. Factor out 12\frac{1}{2}: 12x5dx=12x5dx\int \frac{1}{2}x^5 \, dx = \frac{1}{2} \int x^5 \, dx

  2. Apply the power rule for integration: The rule states xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C. 12x5dx=12x5+15+1+C=12x66+C\frac{1}{2} \int x^5 \, dx = \frac{1}{2} \cdot \frac{x^{5+1}}{5+1} + C = \frac{1}{2} \cdot \frac{x^6}{6} + C

  3. Simplify: x612+C\frac{x^6}{12} + C

Answer: 12x5dx=x612+C\int \frac{1}{2}x^5 \, dx = \frac{x^6}{12} + C


12. (2+4x)5dx\int (2 + 4x)^5 \, dx

Solution:

  1. Use substitution: Let u=2+4xu = 2 + 4x, so du=4dxdu = 4 \, dx or dx=du4dx = \frac{du}{4}.

  2. Rewrite the integral in terms of uu: (2+4x)5dx=u5du4=14u5du\int (2 + 4x)^5 \, dx = \int u^5 \cdot \frac{du}{4} = \frac{1}{4} \int u^5 \, du

  3. Integrate using the power rule: 14u5du=14u5+15+1+C=14u66+C=u624+C\frac{1}{4} \int u^5 \, du = \frac{1}{4} \cdot \frac{u^{5+1}}{5+1} + C = \frac{1}{4} \cdot \frac{u^6}{6} + C = \frac{u^6}{24} + C

  4. Substitute back u=2+4xu = 2 + 4x: (2+4x)624+C\frac{(2 + 4x)^6}{24} + C

Answer: (2+4x)5dx=(2+4x)624+C\int (2 + 4x)^5 \, dx = \frac{(2 + 4x)^6}{24} + C


13. (x+5)6dx\int (x + 5)^6 \, dx

Solution:

  1. Use substitution: Let u=x+5u = x + 5, so du=dxdu = dx.

  2. Rewrite the integral in terms of uu: (x+5)6dx=u6du\int (x + 5)^6 \, dx = \int u^6 \, du

  3. Integrate using the power rule: u6du=u6+16+1+C=u77+C\int u^6 \, du = \frac{u^{6+1}}{6+1} + C = \frac{u^7}{7} + C

  4. Substitute back u=x+5u = x + 5: (x+5)77+C\frac{(x + 5)^7}{7} + C

Answer: (x+5)6dx=(x+5)77+C\int (x + 5)^6 \, dx = \frac{(x + 5)^7}{7} + C


14. (3x+1)6dx\int (3x + 1)^6 \, dx

Solution:

  1. Use substitution: Let u=3x+1u = 3x + 1, so du=3dxdu = 3 \, dx or dx=du3dx = \frac{du}{3}.

  2. Rewrite the integral in terms of uu: (3x+1)6dx=u6du3=13u6du\int (3x + 1)^6 \, dx = \int u^6 \cdot \frac{du}{3} = \frac{1}{3} \int u^6 \, du

  3. Integrate using the power rule: 13u6du=13u6+16+1+C=13u77+C=u721+C\frac{1}{3} \int u^6 \, du = \frac{1}{3} \cdot \frac{u^{6+1}}{6+1} + C = \frac{1}{3} \cdot \frac{u^7}{7} + C = \frac{u^7}{21} + C

  4. Substitute back u=3x+1u = 3x + 1: (3x+1)721+C\frac{(3x + 1)^7}{21} + C

Answer: (3x+1)6dx=(3x+1)721+C\int (3x + 1)^6 \, dx = \frac{(3x + 1)^7}{21} + C


Do you have any questions or need further clarification?

Here are 5 related questions for practice:

  1. What is (5x2)3dx\int (5x - 2)^3 \, dx?
  2. How do you solve 4x3dx\int 4x^3 \, dx using the power rule?
  3. What substitution would you use for (7x+3)5dx\int (7x + 3)^5 \, dx?
  4. How do you compute definite integrals involving substitutions, e.g., 01(x+1)2dx\int_0^1 (x + 1)^2 \, dx?
  5. Can you generalize the solution for (ax+b)ndx\int (ax + b)^n \, dx?

Tip: Always double-check your substitution step to ensure the dxdx term is properly replaced!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Power Rule of Integration

Formulas

Power Rule: \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)
Substitution: Let \( u = f(x) \), then \( du = f'(x) \, dx \)

Theorems

-

Suitable Grade Level

Grades 11-12