Math Problem Statement

Solution

To solve the given problem, we start with the functional equation and the integral condition.

Given: f(x+2)f(x)=xf(x+2) - f(x) = x 02f(x)dx=0\int_{0}^{2} f(x) \, dx = 0

We are to find: 03f(x)dx\int_{0}^{3} f(x) \, dx

First, let's solve the functional equation. We know that f(x+2)f(x)=xf(x+2) - f(x) = x. To find f(x)f(x), let's assume a general form: f(x)=g(x)+h(x)f(x) = g(x) + h(x) where g(x)g(x) is a particular solution to the non-homogeneous equation g(x+2)g(x)=xg(x+2) - g(x) = x and h(x)h(x) is a solution to the homogeneous equation h(x+2)h(x)=0h(x+2) - h(x) = 0.

Step 1: Find the particular solution g(x)g(x).

Assume g(x)=ax+bg(x) = ax + b.

g(x+2)=a(x+2)+b=ax+2a+bg(x+2) = a(x+2) + b = ax + 2a + b g(x+2)g(x)=ax+2a+b(ax+b)=2ag(x+2) - g(x) = ax + 2a + b - (ax + b) = 2a To satisfy g(x+2)g(x)=xg(x+2) - g(x) = x, we must have 2a=x2a = x, but this is not possible since xx is variable. Therefore, assume another form. Try g(x)=x22g(x) = \frac{x^2}{2}.

g(x+2)=(x+2)22=x2+4x+42=x22+2x+2g(x+2) = \frac{(x+2)^2}{2} = \frac{x^2 + 4x + 4}{2} = \frac{x^2}{2} + 2x + 2 g(x+2)g(x)=(x22+2x+2)x22=2x+2g(x+2) - g(x) = \left(\frac{x^2}{2} + 2x + 2\right) - \frac{x^2}{2} = 2x + 2

This still does not satisfy the equation. To find a simpler particular solution, use: g(x)=x(x+2)4g(x) = \frac{x(x+2)}{4}

Then: g(x+2)=(x+2)(x+4)4=x2+6x+84g(x+2) = \frac{(x+2)(x+4)}{4} = \frac{x^2 + 6x + 8}{4} g(x+2)g(x)=x2+6x+84x2+2x4=4x+84=x+2g(x+2) - g(x) = \frac{x^2 + 6x + 8}{4} - \frac{x^2 + 2x}{4} = \frac{4x + 8}{4} = x + 2

Thus, the correct particular solution to satisfy g(x+2)g(x)=xg(x+2) - g(x) = x is: g(x)=x(x+2)4g(x) = \frac{x(x+2)}{4}

Step 2: Find the homogeneous solution h(x)h(x).

Given h(x+2)h(x)=0h(x+2) - h(x) = 0, we conclude h(x+2)=h(x)h(x+2) = h(x), meaning h(x)h(x) is a periodic function with period 2.

Step 3: Combine solutions and satisfy the integral condition.

Since 02f(x)dx=0\int_{0}^{2} f(x) \, dx = 0, f(x)=x(x+2)4+h(x)f(x) = \frac{x(x+2)}{4} + h(x) We calculate: 02f(x)dx=02(x(x+2)4+h(x))dx\int_{0}^{2} f(x) \, dx = \int_{0}^{2} \left(\frac{x(x+2)}{4} + h(x)\right) dx =02x2+2x4dx+02h(x)dx= \int_{0}^{2} \frac{x^2 + 2x}{4} \, dx + \int_{0}^{2} h(x) \, dx =1402(x2+2x)dx+02h(x)dx= \frac{1}{4} \int_{0}^{2} (x^2 + 2x) \, dx + \int_{0}^{2} h(x) \, dx

Since 02f(x)dx=0\int_{0}^{2} f(x) \, dx = 0, 02h(x)dx=0\int_{0}^{2} h(x) \, dx = 0

Step 4: Calculate 03f(x)dx\int_{0}^{3} f(x) \, dx.

03f(x)dx=03(x(x+2)4+h(x))dx\int_{0}^{3} f(x) \, dx = \int_{0}^{3} \left(\frac{x(x+2)}{4} + h(x)\right) dx Since h(x)h(x) is periodic with period 2, 03h(x)dx=02h(x)dx+23h(x)dx=0+01h(x)dx\int_{0}^{3} h(x) \, dx = \int_{0}^{2} h(x) \, dx + \int_{2}^{3} h(x) \, dx = 0 + \int_{0}^{1} h(x) \, dx

We thus only need to consider the integral of the particular solution: 03x(x+2)4dx=1403(x2+2x)dx\int_{0}^{3} \frac{x(x+2)}{4} \, dx = \frac{1}{4} \int_{0}^{3} (x^2 + 2x) \, dx =14(03x2dx+203xdx)= \frac{1}{4} \left( \int_{0}^{3} x^2 \, dx + 2 \int_{0}^{3} x \, dx \right) =14(x3303+2x2203)= \frac{1}{4} \left( \frac{x^3}{3} \bigg|_{0}^{3} + 2 \cdot \frac{x^2}{2} \bigg|_{0}^{3} \right) =14(273+292)= \frac{1}{4} \left( \frac{27}{3} + 2 \cdot \frac{9}{2} \right) =14(9+9)= \frac{1}{4} \left( 9 + 9 \right) =1418=4.5= \frac{1}{4} \cdot 18 = 4.5

Thus, 03f(x)dx=4.5\int_{0}^{3} f(x) \, dx = 4.5

Would you like more details or have any questions?

Here are 5 questions you might ask next:

  1. How do you solve a different type of functional equation?
  2. Can you explain how to find homogeneous solutions?
  3. How can I verify if my solution to a functional equation is correct?
  4. Can you solve an integral involving periodic functions?
  5. How does the assumption of h(x)h(x) being periodic help in solving the equation?

Tip: Always verify your solution by checking if it satisfies both the functional equation and any given integral conditions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functional Equations
Integral Calculus

Formulas

Integration by parts

Theorems

-

Suitable Grade Level

Advanced High School or College Level