Math Problem Statement

Solve the following problems: g) 100^0.1 : 100^0.6 h) 81^(-2/3) : 81^(-11/12)

Solution

Let’s solve the problems step-by-step.

Problem (g)

The expression is: 1000.1:1000.6100^{0.1} : 100^{0.6}

In terms of exponents, division of powers with the same base am:an=amna^{m} : a^{n} = a^{m-n}. Therefore: 1000.1:1000.6=1000.10.6=1000.5100^{0.1} : 100^{0.6} = 100^{0.1 - 0.6} = 100^{-0.5}

Now, rewrite 1000.5100^{-0.5} as: 1000.5=11000.5100^{-0.5} = \frac{1}{100^{0.5}}

Since 1000.5=100=10100^{0.5} = \sqrt{100} = 10, we get: 110=0.1\frac{1}{10} = 0.1

So, the answer for (g) is: 0.10.1

Problem (h)

The expression is: 8123:81111281^{-\frac{2}{3}} : 81^{-\frac{11}{12}}

Using the same rule for exponents: 8123:811112=8123+111281^{-\frac{2}{3}} : 81^{-\frac{11}{12}} = 81^{-\frac{2}{3} + \frac{11}{12}}

To add the exponents, find a common denominator: [ -\frac{2}{3} = -\frac{8}{12} \quad \text{and} \quad -\frac{11}{12} = -\frac{8}{12} + \frac{11}{12} = \frac{3}{12}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Division of Powers
Rational Exponents

Formulas

a^m : a^n = a^(m-n)
a^-m = 1 / a^m
x^(m/n) = n√(x^m)

Theorems

Laws of Exponents

Suitable Grade Level

High School (Grades 10-12)