Math Problem Statement

1. Find the value of 5^-3 * 1/5^3. 2. Simplify 2^5 / 2^-6. 3. Express 4^-3 as a power with base 2. 4. Simplify and write the answer in exponential form: (2^5 / 2^8)^5 * 2^5. 5. Find m such that (-3)^(m+1) * (-3)^5 = (-3)^7. 6. Find the value of (2/3)^-2. 7. Simplify: (5/8)^-7 * (8/5)^-5. 8. Simplify (-4)^-10 * (-4)^5.

Solution

Let's solve the problems one by one.

1. Find the value of 53×1535^{-3} \times \frac{1}{5^3}.

Using the properties of exponents: 53×153=53×53=565^{-3} \times \frac{1}{5^3} = 5^{-3} \times 5^{-3} = 5^{-6} Therefore, 56=1565^{-6} = \frac{1}{5^6}.

2. Simplify 2526\frac{2^5}{2^{-6}}.

Using the properties of exponents, specifically aman=amn\frac{a^m}{a^n} = a^{m-n}: 2526=25(6)=25+6=211\frac{2^5}{2^{-6}} = 2^{5 - (-6)} = 2^{5+6} = 2^{11}

3. Express 434^{-3} as a power with base 2.

We know that 4=224 = 2^2, so: 43=(22)3=22×(3)=264^{-3} = (2^2)^{-3} = 2^{2 \times (-3)} = 2^{-6}

4. Simplify and write the answer in exponential form: (2528)5×25\left(\frac{2^5}{2^8}\right)^5 \times 2^5.

First simplify inside the parentheses: 2528=258=23\frac{2^5}{2^8} = 2^{5-8} = 2^{-3} Now raise it to the power of 5: (23)5=215(2^{-3})^5 = 2^{-15} Now multiply by 252^5: 215×25=215+5=2102^{-15} \times 2^5 = 2^{-15+5} = 2^{-10}

5. Find mm such that (3)m+1×(3)5=(3)7(-3)^{m+1} \times (-3)^5 = (-3)^7.

Using the property am×an=am+na^m \times a^n = a^{m+n}: (3)m+1×(3)5=(3)(m+1)+5=(3)m+6(-3)^{m+1} \times (-3)^5 = (-3)^{(m+1) + 5} = (-3)^{m+6} Now set this equal to (3)7(-3)^7: m+6=7m + 6 = 7 Solving for mm, we get: m=1m = 1

6. Find the value of (23)2\left(\frac{2}{3}\right)^{-2}.

Using the rule (ab)n=(ba)n\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n: (23)2=(32)2=94\left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}

7. Simplify (58)7×(85)5\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5}.

We simplify both terms: (58)7=(85)7\left(\frac{5}{8}\right)^{-7} = \left(\frac{8}{5}\right)^7 (85)5=(58)5\left(\frac{8}{5}\right)^{-5} = \left(\frac{5}{8}\right)^5 Now multiply the two results: (85)7×(58)5=(87)(55)(57)(85)=8252=(85)2\left(\frac{8}{5}\right)^7 \times \left(\frac{5}{8}\right)^5 = \frac{(8^7)(5^5)}{(5^7)(8^5)} = \frac{8^2}{5^2} = \left(\frac{8}{5}\right)^2

8. Simplify (4)10×(4)5(-4)^{-10} \times (-4)^5.

Using the property am×an=am+na^m \times a^n = a^{m+n}: (4)10×(4)5=(4)10+5=(4)5(-4)^{-10} \times (-4)^5 = (-4)^{-10+5} = (-4)^{-5} Therefore, (4)5=1(4)5(-4)^{-5} = \frac{1}{(-4)^5}.


Do you need further clarifications on any of the steps?

Here are five related questions to deepen your understanding:

  1. What is the general rule for multiplying terms with the same base and different exponents?
  2. How can you express 939^{-3} using base 3?
  3. What happens when you raise a negative base to an even power versus an odd power?
  4. How do fractional exponents relate to roots, and can you give an example?
  5. What is the reciprocal of (a/b)n(a/b)^n, and how is it simplified?

Tip: When dealing with exponents, remember that adding exponents occurs during multiplication, while subtracting exponents happens when dividing terms with the same base.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponent Rules
Simplification of Expressions
Negative Exponents
Powers of Fractions

Formulas

a^m * a^n = a^(m+n)
(a/b)^n = a^n / b^n
a^-n = 1/a^n
(a^m)^n = a^(m*n)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12