Math Problem Statement

Selesaikanlah: a. \(\left(\frac{x^{-5}y^4}{xy^3}\right)^{-2} \cdot \left(\frac{x^7y^{-3}}{x^{-4}y^6}\right)^{-\frac{1}{2}}\), \quad x \neq 0, y \neq 0\) b. \(\frac{\left(m^{10}n^{-2}\right)^3 \cdot \left(m^5n^{-5}\right)^3}{mn}\), \quad m \neq 0, n \neq 0\) c. \(\frac{p + q}{\sqrt{p} - \sqrt{q}}\), \quad p \neq 0, q \neq 0\) d. \(\log\left(\frac{t + 6}{36 - t^2}\right)\)

Solution

Let's go through the mathematical expressions from the image and solve them one by one.

1. Solve:

a.

(x5y4xy3)2(x7y3x4y6)12,x0,y0\left( \frac{x^{-5}y^4}{xy^3} \right)^{-2} \cdot \left( \frac{x^7y^{-3}}{x^{-4}y^6} \right)^{-\frac{1}{2}}, \quad x \neq 0, y \neq 0

Step-by-step:

  1. Simplify the first term: x5y4xy3=x51y43=x6y1=yx6\frac{x^{-5}y^4}{xy^3} = x^{-5-1} y^{4-3} = x^{-6} y^1 = \frac{y}{x^6} Therefore: (yx6)2=x12y2\left( \frac{y}{x^6} \right)^{-2} = \frac{x^{12}}{y^2}

  2. Simplify the second term: x7y3x4y6=x7+4y36=x11y9=x11y9\frac{x^7y^{-3}}{x^{-4}y^6} = x^{7+4} y^{-3-6} = x^{11} y^{-9} = \frac{x^{11}}{y^9} Then: (x11y9)12=y92x112\left( \frac{x^{11}}{y^9} \right)^{-\frac{1}{2}} = \frac{y^{\frac{9}{2}}}{x^{\frac{11}{2}}}

  3. Multiply the two results: x12y2y92x112\frac{x^{12}}{y^2} \cdot \frac{y^{\frac{9}{2}}}{x^{\frac{11}{2}}} Simplifying: x12112y922=x242112y9242=x132y52x^{12 - \frac{11}{2}} \cdot y^{\frac{9}{2} - 2} = x^{\frac{24}{2} - \frac{11}{2}} y^{\frac{9}{2} - \frac{4}{2}} = x^{\frac{13}{2}} y^{\frac{5}{2}} Final result for a: x132y52x^{\frac{13}{2}} y^{\frac{5}{2}}


b.

(m10n2)3(m5n5)3mn,m0,n0\frac{\left( m^{10}n^{-2} \right)^3 \cdot \left( m^5n^{-5} \right)^3}{mn}, \quad m \neq 0, n \neq 0

Step-by-step:

  1. Simplify the numerator: (m10n2)3=m30n6,(m5n5)3=m15n15\left( m^{10}n^{-2} \right)^3 = m^{30}n^{-6}, \quad \left( m^5n^{-5} \right)^3 = m^{15}n^{-15} So the numerator becomes: m30n6m15n15=m45n21m^{30}n^{-6} \cdot m^{15}n^{-15} = m^{45}n^{-21}

  2. Simplify the fraction: m45n21mn=m451n211=m44n22\frac{m^{45}n^{-21}}{mn} = m^{45-1}n^{-21-1} = m^{44}n^{-22} Final result for b: m44n22\frac{m^{44}}{n^{22}}


c.

p+qpq,p0,q0\frac{p + q}{\sqrt{p} - \sqrt{q}}, \quad p \neq 0, q \neq 0

Step-by-step:

  1. Multiply both the numerator and the denominator by the conjugate of the denominator: p+qpqp+qp+q=(p+q)(p+q)(p)2(q)2\frac{p + q}{\sqrt{p} - \sqrt{q}} \cdot \frac{\sqrt{p} + \sqrt{q}}{\sqrt{p} + \sqrt{q}} = \frac{(p+q)(\sqrt{p} + \sqrt{q})}{(\sqrt{p})^2 - (\sqrt{q})^2} Simplify the denominator: (p)2(q)2=pq(\sqrt{p})^2 - (\sqrt{q})^2 = p - q So we have: (p+q)(p+q)pq\frac{(p + q)(\sqrt{p} + \sqrt{q})}{p - q} Final result for c: (p+q)(p+q)pq\frac{(p + q)(\sqrt{p} + \sqrt{q})}{p - q}

d.

log(t+636t2)\log \left( \frac{t + 6}{36 - t^2} \right)

Step-by-step:

  1. Notice that 36t2=(6t)(6+t)36 - t^2 = (6 - t)(6 + t), so we can rewrite the expression as: log(t+6(6+t)(6t))\log \left( \frac{t + 6}{(6 + t)(6 - t)} \right) Simplify the fraction: t+6(6+t)(6t)=16t\frac{t + 6}{(6 + t)(6 - t)} = \frac{1}{6 - t} Therefore: log(16t)\log \left( \frac{1}{6 - t} \right) Using the logarithmic property log(1x)=log(x)\log \left( \frac{1}{x} \right) = -\log(x), we get: log(6t)-\log(6 - t) Final result for d: log(6t)-\log(6 - t)

Let me know if you'd like further details on any of the steps or have any questions! Here are some related problems you might find helpful:

  1. How would you simplify an expression with negative exponents?
  2. What are the properties of logarithms that help in simplifying complex expressions?
  3. How does the conjugate method work when rationalizing denominators?
  4. What are some other techniques to simplify fractions with exponents?
  5. Can you identify other types of indeterminate forms in logarithmic expressions?

Tip: Always try to simplify each term step-by-step before combining them for an easier approach!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Simplification
Algebraic Expressions
Logarithms

Formulas

Exponent rules: \(a^m \cdot a^n = a^{m+n}\), \((a^m)^n = a^{mn}\)
Conjugate method for rationalizing denominators
Logarithmic identity: \(\log(\frac{a}{b}) = \log(a) - \log(b)\)

Theorems

Properties of exponents
Properties of logarithms

Suitable Grade Level

Grades 10-12